Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: Thay x=-1 và y=0,5 vào y=ax+1, ta được:
\(a\cdot\left(-1\right)+1=0,5\)
=>\(a\cdot\left(-1\right)=0,5-1=-0,5\)
=>a=0,5
b: Khi a=0,5 thì \(y=0,5\cdot x+1\)
Lập bảng giá trị:
x | -1 | 0 | 1 |
y=0,5x+1 | 0,5 | 1 | 1,5 |
Vẽ đồ thị:
Bài 3:
a:
b: Tọa độ A là:
\(\left\{{}\begin{matrix}x=0\\y=-x+4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=0\\y=-0+4=4\end{matrix}\right.\)
Vậy: A(0;4)
Tọa độ B là:
\(\left\{{}\begin{matrix}x=0\\y=x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0-4=-4\end{matrix}\right.\)
vậy: B(0;-4)
Tọa độ C là:
\(\left\{{}\begin{matrix}-x+4=x-4\\y=x-4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x=-8\\y=x-4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=4-4=0\end{matrix}\right.\)
Vậy: C(4;0)
c: A(0;4); B(0;-4); C(4;0)
\(AB=\sqrt{\left(0-0\right)^2+\left(-4-4\right)^2}=\sqrt{0^2+\left(-8\right)^2}=8\)
\(AC=\sqrt{\left(4-0\right)^2+\left(0-4\right)^2}=\sqrt{4^2+4^2}=4\sqrt{2}\)
\(BC=\sqrt{\left(4-0\right)^2+\left(0+4\right)^2}=\sqrt{4^2+4^2}=4\sqrt{2}\)
Vì \(CA^2+CB^2=AB^2\)
nên ΔABC vuông tại C
=>\(S_{CAB}=\dfrac{1}{2}\cdot CA\cdot CB=\dfrac{1}{2}\cdot4\sqrt{2}\cdot4\sqrt{2}=2\sqrt{2}\cdot4\sqrt{2}=16\)
Thay x=-1; y=0 vào A và B:
A= 3x5 -7x2y3 + 15x2y = 3.(-1)5 - 7(-1)2.03 + 15(-1)2.0= -3 - 0 + 0 = -3
B= 5x2y - 15xy2 + x5 + 8 = 5.(-1)2.0 - 15.(-1).02 + (-1)5 + 8 = 0 + 0 + (-1) + 8 = 7
b, A+B= (3x5 - 7x2y3 + 15x2y) + (5x2y - 15xy2 + x5 + 8)
A+B = (3x5 + x5) - 7x2y3 + (15x2y + 5x2y) - 15xy2 + 8
A+B= 4x5 - 7x2y3 + 20x2y - 15xy2 + 8
---
A-B= (3x5 - 7x2y3 + 15x2y) - (5x2y - 15xy2 + x5 + 8)
A-B= (3x5 - x5) - 7x2y3 + (15x2y - 5x2y) + 15xy2 - 8
A-B= 2x5 - 7x2y3 + 10x2y + 15xy2 - 8
Câu 15:
a: \(=\dfrac{x+4-3x}{x-2}=\dfrac{-2x+4}{x-2}=-2\)
b: \(=\dfrac{10}{\left(x-5\right)\left(x+5\right)}-\dfrac{5}{x\left(x+5\right)}\)
\(=\dfrac{10x-5x+25}{x\left(x+5\right)\left(x-5\right)}=\dfrac{5\left(x+5\right)}{x\left(x+5\right)\left(x-5\right)}=\dfrac{5}{x\left(x-5\right)}\)
a: Xét tứ giác BHCI có
M là trung điểm của BC
M là trung điểm của HI
Do đó: BHCI là hình bình hành
Suy ra: CI=BH
cho tứ giác ABCD có góc A+góc C=190 độ. gọi I là giao điểm các tia phân giác của góc B và góc D, biết góc BID= 145 độ. tính góc A và góc C
Bài 2:
a: Thay x=2 và y=0 vào y=(m-2)x+m-1, ta được:
\(2\left(m-2\right)+m-1=0\)
=>\(2m-4+m-1=0\)
=>3m-5=0
=>3m=5
=>\(m=\dfrac{5}{3}\)
b: Thay x=0 và y=2 vào y=(m-2)x+m-1, ta được:
\(0\cdot\left(m-2\right)+m-1=2\)
=>m-1=2
=>m=3
Bài 1:
a:
b:
c: