Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
toàn hđt mà bạn
a, \(\frac{x^3}{8}+\frac{3}{4}x^2y^2+\frac{3}{2}xy^4+y^6=\left(\frac{x}{2}+y^2\right)^3\)
b, \(m^3+9m^2n+27mn^2+27n^3=\left(m+3n\right)^3\)
c, \(8u^3-48u^2v+96uv^2-64v^3=\left(2y-4v\right)^3\)
d, \(\left(z-t\right)^3+15\left(z-t\right)^2+75\left(z-t\right)+125\)
\(=\left(z-t+5\right)^3\); e, \(x^3+3x^2+3x+1=\left(x+1\right)^3\)
sửa hộ mình ý c =)) do gần nhau quá nên đánh lộn
\(\left(2u-4v\right)^3\)
\(a,\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|=4x\)
\(\left|x+3,4\right|\ge0;\left|x+2,4\right|\ge0;\left|x+7,2\right|\ge0\)
\(< =>\left|x+3,4\right|+\left|x+2,4\right|+\left|x+7,2\right|>0\)
\(< =>4x>0\)
\(x>0\)
\(\hept{\begin{cases}\left|x+3,4\right|=x+3,4\\\left|x+2,4\right|=x+2,4\\\left|x+7,2\right|=x+7,2\end{cases}}\)
\(x+3,4+x+2,4+x+7,2=4x\)
\(x=13\left(TM\right)\)
\(b,3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(3^n.27+3^n.3+2^n.8+2^n.4\)
\(3^n.30+2^n.12\)
\(\hept{\begin{cases}3^n.30⋮6\\2^n.12⋮6\end{cases}}\)
\(< =>3^n.30+2^n.12⋮6< =>VP⋮6\)
Bài 1:
6, x - \(\frac{x+1}{3}\) = \(\frac{2x+1}{5}\)
\(\Leftrightarrow\) \(\frac{15x}{15}\) - \(\frac{5\left(x+1\right)}{15}\) = \(\frac{3\left(2x+1\right)}{15}\)
\(\Leftrightarrow\) 15x - 5(x + 1) = 3(2x + 1)
\(\Leftrightarrow\) 15x - 5x - 5 = 6x + 3
\(\Leftrightarrow\) 10x - 5 = 6x + 3
\(\Leftrightarrow\) 10x - 6x = 3 + 5
\(\Leftrightarrow\) 4x = 8
\(\Leftrightarrow\) x = 2
Vậy S = {2}
làm lỗi nên hơi lâu
Chúc bạn học tốt!
1) \(\frac{3x+2}{2}-\frac{3x+1}{6}=\frac{5}{3}+2x\)
\(\Leftrightarrow\frac{9x+6}{6}-\frac{3x+1}{6}-\frac{10}{6}-\frac{12x}{6}=0\)
\(\Leftrightarrow\frac{9x+6-3x-1-10-12x}{6}=0\)
\(\Leftrightarrow\frac{-6x-5}{6}=0\)
\(\Leftrightarrow-6x-5=0\)
\(\Leftrightarrow-6x=5\Leftrightarrow x=-\frac{5}{6}\)
Vậy \(S=\left\{-\frac{5}{6}\right\}\)
2) \(\frac{x-3}{5}=6-\frac{1-2x}{3}\)
\(\Leftrightarrow\frac{3x-9}{15}-\frac{90}{15}+\frac{5-10x}{15}=0\)
\(\Leftrightarrow3x-9-90+5-10x=0\)
\(\Leftrightarrow-7x-94=0\)
\(\Leftrightarrow-7x=94\Leftrightarrow x=-\frac{94}{7}\)
Vậy \(S=-\frac{94}{7}\)
Bài 3:
Vì MN//BC, áp dụng định lí Talet, ta có:
\(\frac{AM}{AB}=\frac{AN}{AC}\Leftrightarrow\frac{3}{9}=\frac{4}{AC}\\ \Rightarrow AC=\frac{4\cdot9}{3}=12\\ \Rightarrow NC=AC-AN=12-4=8\)
Xét \(\Delta ABC,\widehat{A}=90^0\) , áp dụng định lí Pytago, ta có:
\(BC^2=AB^2+AC^2=9^2+12^2=225\\ \Rightarrow BC=\sqrt{225}=15\)
Tương tự, ta lại có MN//BC, nên:
\(\frac{AN}{AC}=\frac{MN}{BC}\Leftrightarrow\frac{4}{12}=\frac{MN}{15}\\ \Rightarrow MN=\frac{15.4}{12}=5\)
Xét \(\Delta ABN,\widehat{A}=90^0\) , áp dụng định lí Pytago, ta có:
\(BN^2=AB^2+AN^2=9^2+4^2=97\\ \Rightarrow BN=\sqrt{97}\approx9.8\)
Vậy \(NC=8\\ BC=15\\ MN=5\\ BN=9.8\)
Bài 2: (Hình tự vẽ nha)
Vì \(MN\perp AB,AC\perp AB\) nên MN//AC.
Vì MN//AC (cmt), áp dung định lí Talet, ta có:
\(\frac{MB}{AB}=\frac{NB}{BC}\Leftrightarrow\frac{3}{AB}=\frac{5}{7}\\ \Rightarrow AB=\frac{3\cdot7}{5}=4.2\)
Xét \(\Delta ABC\), \(\widehat{A}=90^0\) , áp dụng định lí Pytago, ta có:
\(BC^2=AB^2+AC^2\\ \Rightarrow AC^2=BC^2-AB^2\\ \Leftrightarrow AC^2=7^2-4.2^2=31.36\\ \Rightarrow AC=\sqrt{31.36}=5.6\)
Chu vi của \(\Delta ABC\) là:
\(AB+AC+BC=4.2+7+5.6=16.8\)
Thực hiện nhân tung ra ta có .
a.\(x^3+3x^2+3x+1-\left(x^3-3x+2\right)-3\left(x^2-9\right)=5\)
\(\Leftrightarrow6x+1-2+27=5\Leftrightarrow6x=-21\Leftrightarrow x=-\frac{7}{2}\)
b.\(x^3+3x^2-4+x^3-3x+2-\left(x^3+3x^2+3x+1\right)=4\)
\(\Rightarrow x^3=7\Leftrightarrow x=\sqrt[3]{7}\)
c.\(x^3+3x^2+3x+1+x^3-3x^2+3x-1=x^3+6x^2+12x+8+x^3-6x^2+12x-8\)
\(\Leftrightarrow2x^3+6x=2x^3+24x\Leftrightarrow18x=0\Leftrightarrow x=0\)
a) \(\left(x+1\right)^3-\left(x+2\right)\left(x-1\right)^2-3\left(x-3\right)\left(x+3\right)\)
\(=\left(x^3+3x^2+3x+1\right)-\left(x+1\right)\left(x^2-2x+1\right)-3\left(x^2-9\right)\)
\(=x^3+3x^2+3x+1-\left(x^3-x^2-x+1\right)-\left(3x^2-27\right)\)
\(=x^3+3x^2+3x+1-x^3+x^2+x+1-3x^2+27\)
\(=6x+26\)