K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2019

em 2k6, đọc phần lí thuyết r lm, nên có lỗi j sai mong mn thông cảmvui

13 tháng 7 2019

bài 1,

a, \(3xy\left(4xy^2-5x^2y-4xy\right)\)

= \(3xy.4xy^2-3xy.5x^2y-3xy.4xy\)

=\(12x^2y^3-15x^3y^2-12x^2y^2\)

Câu 5:B

Câu 4: C

Câu 3: D

Câu 2: A

Câu 1: A

28 tháng 6 2017

Quy đồng mẫu thức nhiều phân thức

Quy đồng mẫu thức nhiều phân thức

17 tháng 11 2017

Bạn siêng thật !!!

21 tháng 11 2017

1)

\(\dfrac{7x-1}{2x^2+6x}=\dfrac{7x-12}{x\left(x+3\right)}\)

\(\dfrac{3-2x}{x^2-9}=\dfrac{3-2x}{\left(x-3\right)\left(x+3\right)}\)

MTC: \(x\left(x-3\right)\left(x+3\right)\)

\(\dfrac{7x-1}{2x^2+6x}=\dfrac{7x-12}{x\left(x+3\right)}=\dfrac{\left(x-3\right)\left(7x-12\right)}{x\left(x-3\right)\left(x+3\right)}=\dfrac{7x^2-12x-21x+36}{x\left(x-3\right)\left(x+3\right)}=\dfrac{7x^2-33x+36}{x\left(x-3\right)\left(x+3\right)}\)

\(\dfrac{3-2x}{x^2-9}=\dfrac{3-2x}{\left(x-3\right)\left(x+3\right)}=\dfrac{ x\left(3-2x\right)}{x\left(x-3\right)\left(x+3\right)}\dfrac{3x-2x^2}{x\left(x-3\right)\left(x+3\right)}\)

2)

\(\dfrac{2x-1}{x-x^2}=\dfrac{2x-1}{x\left(1-x\right)}\)

\(\dfrac{x+1}{2-4x+2x^2}=\dfrac{x+1}{2\left(1-2x+x^2\right)}=\dfrac{x+1}{2\left(1-x\right)^2}\)

MTC: \(2x\left(1-x\right)^2\)

\(\dfrac{2x-1}{x-x^2}=\dfrac{2x-1}{x\left(1-x\right)}=\dfrac{2\left(1-x\right)\left(2x-1\right)}{2x\left(1-x\right)^2}=\dfrac{\left(2-2x\right)\left(2x-1\right)}{2x\left(1-x\right)^2}=\dfrac{4x-2-4x^2+2x}{2x\left(1-x\right)^2}=\dfrac{6x-2-4x^2}{2x\left(1-x\right)^2}\)

\(\dfrac{x+1}{2-4x+2x^2}=\dfrac{x+1}{2\left(1-2x+x^2\right)}=\dfrac{x+1}{2\left(1-x\right)^2}=\dfrac{ x\left(x+1\right)}{2x\left(1-x\right)^2}=\dfrac{x^2+x}{2x\left(1-x\right)^2}\)

21 tháng 11 2017

Phần còn lại nhé :v

3.

\(x^3+1=\left(x+1\right)\left(x^2-x+1\right)\)

\(x^2-x+1=x^2-x+1\)

\(x+1=x+1\)

MTC: \(\left(x+1\right)\left(x^2-x+1\right)\)

\(\dfrac{x-1}{x^3+1}=\dfrac{x-1}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\dfrac{2x}{x^2-x+1}=\dfrac{2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

\(\dfrac{2}{x+1}=\dfrac{2\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)

4.

\(5x\)

\(x-2y=x-2y=-\left(2y-x\right)\)

\(8y^2-2x^2=2\left(4y^2-x^2\right)=2\left(2y-x\right)\left(2y+x\right)\)

MTC: \(-10x\left(2y-x\right)\left(2y+x\right)\)

\(\dfrac{7}{5x}=\dfrac{7\left(2y-x\right)\left(2y+x\right)-2}{5x\left(2y-x\right)\left(2y+x\right)-2}=\dfrac{-14\left(2y-x\right)\left(2y+x\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)

\(\dfrac{4}{x-2y}=\dfrac{4\left(2y-x\right)\left(2y+x\right)10x}{-\left(2y-x\right)\left(2y+x\right)10x}=\dfrac{40x\left(2y-x\right)\left(2y+x\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)

\(\dfrac{x-y}{8y^2-2x^2}=\dfrac{\left(x-y\right)-5x}{2\left(2y-x\right)\left(2y+x\right)-5x}=\dfrac{-5x\left(x-y\right)}{-10x\left(2y-x\right)\left(2y+x\right)}\)

5.

\(x^3-1=\left(x-1\right)\left(x^2+x+1\right)\)

\(x^2-x=x\left(x-1\right)\)

\(x^2+x+1\)

MTC: \(x\left(x-1\right)\left(x^2+x+1\right)\)

\(\dfrac{x}{x^3-1}=\dfrac{x.x}{\left(x-1\right)\left(x^2+x+1\right)x}=\dfrac{x^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(\dfrac{x+1}{x^2-x}=\dfrac{\left(x+1\right)\left(x^2+x+1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}\)

\(\dfrac{x-1}{x^2+x+1}=\dfrac{x\left(x-1\right)\left(x-1\right)}{x\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{x\left(x-1\right)^2}{x\left(x-1\right)\left(x^2+x+1\right)}\)

6.

\(x^2-2ax+a^2=\left(x-a\right)^2\)

\(x^2-ax=x\left(x-a\right)\)

MTC: \(x\left(x-a\right)^2\)

\(\dfrac{x}{x^2-2ax+a^2}=\dfrac{x.x}{\left(x-a\right)^2x}=\dfrac{x^2}{x\left(x-a\right)^2}\)

\(\dfrac{x+a}{x^2-ax}=\dfrac{\left(x+a\right)\left(x-a\right)}{x\left(x-a\right)\left(x-a\right)}=\dfrac{x^2-a^2}{x\left(x-a\right)^2}\)

5 tháng 11 2017

Giải như sau.

(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y

⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn ! 

30 tháng 9 2018

\(\left(x+6\right)\left(2x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)

Vậy....

hk tốt

^^