Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1:
AMF đồng dạng ABC
tỉ số : AM/AF = AB/AC
AM/MF = AB/BC
AF/FM = AC/CB
MFD đồng dạng CFD
tỉ số : MF/FD= FD/DC
FM/MD = DC/CF
FD/DM = DF/FC
AFB đồng dạng CFB
tỉ số : AB/ BF = BF/FC
AF/AB =BF/ BC
AF / FB = CF/BC
a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
góc B chung
DO đó: ΔAHB\(\sim\)ΔCAB
Suy ra: AH/CA=AB/CB
hay \(AH\cdot BC=AB\cdot AC\)
b: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
nên ADHE là hình chữ nhật
c: BC=15cm
=>AH=7,2(cm)
mà AH=DE
nên DE=7,2(cm)
a) Xét \(\Delta AHB\) và \(\Delta CAB:\)
\(\widehat{AHB}=\widehat{CAB}\left(=90^o\right).\\ \widehat{ABH}chung.\\ \Rightarrow\Delta AHB\sim\Delta CAB\left(g-g\right).\)
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{CB}.\\ \Rightarrow AH.CB=AB.AC.\)
b) Xét tứ giác DHEA:
\(\widehat{DAE}=90^o;\widehat{ADH}=90^o;\widehat{AEH}=90^o.\)
\(\Rightarrow\) Tứ giác DHEA là hình chữ nhật.
c) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=9^2+12^2.\\ \Rightarrow BC=15\left(cm\right).\)
Xét \(\Delta ABC\) vuông tại A; đường cao AH:
\(AH.BC=AB.AC\) (Hệ thức lượng).
\(\Rightarrow AH.15=9.12.\\ \Rightarrow AH=7,2\left(cm\right).\)
Mà \(AH=DE\) (Tứ giác DHEA là hình chữ nhật).
\(\Rightarrow AH=DE=7,2\left(cm\right).\)
b: \(P=\dfrac{4x+6+6x+9-6x-5}{\left(2x+3\right)\left(2x-3\right)}\)
\(=\dfrac{4x+10}{4x^2-9}\)
Câu 4:
Vì D,E là trung điểm AB,AC nên DE là đtb \(\Delta ABC\)
Do đó \(BC=2DE=64\left(m\right)\)
Câu 5:
Chiều dài là \(6:\left(4-3\right).4=24\left(m\right)\)
Diện tích là \(24.\left(24-6\right)=432\left(m^2\right)\)
Xét ΔKLH có KN là phân giác
nên LN/LK=HN/HK
=>LN/3=HN/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{LN}{3}=\dfrac{HN}{4}=\dfrac{LN+HN}{3+4}=\dfrac{25}{7}\)
Do đó: LN=75/7(cm); HN=100/7(cm)
Giúp mik với