K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 8 2020

cái thứ 2 có min đâu bạn ơi?,cả thứ 3 nữa

5 tháng 8 2020

\(E=\left|x-1\right|+\left|x-9\right|\)

\(E=\left|x-1\right|+\left|9-x\right|\ge\left|x-1+9-x\right|=8\)

Min E = 8

\(\Leftrightarrow1\le x\le9\)

9 tháng 11 2019

Đặt \(A=\left|x-2018\right|+\left|x-2020\right|\)

\(\ge\left|\left(x-2018\right)+\left(2020-x\right)\right|=2\)

(Dấu "="\(\Leftrightarrow\left(x-2018\right)\left(2020-x\right)\ge0\)

\(\Leftrightarrow2018\le x\le2020\))

Vậy \(A_{min}=2\Leftrightarrow2018\le x\le2020\)

Đặt \(B=\left|x-2019\right|\ge0\)

(Dấu "="\(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\))

Vậy \(B_{min}=0\Leftrightarrow x=2019\)

\(\Rightarrow\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge2\)

(Dấu "="\(\Leftrightarrow\hept{\begin{cases}2018\le x\le2020\\x=2019\end{cases}}\Leftrightarrow x=2019\))

Vậy \(BT_{min}=2\Leftrightarrow x=2019\)

11 tháng 7 2019

Ta có: M = |x - 2018| + |x - 2019| + 2020

       M = |x - 2018| + |2019 - x| + 2020 \(\ge\)|x - 2018  + 2019 - x| + 2020 = |1| + 2020 = 2021

Dấu "=" xảy ra khi: x - 2018 + x - 2019 = 0

      <=> 2x - 4037 = 0

      <=> 2x = 4037

     <=> x = 2018,5

Vậy Min của M = 2021 tại x = 2018,5

11 tháng 7 2019

Sửa lại một đoạn:

Dấu "=" xảy ra khi : (x - 2018)(2019 - x) = 0

      <=> 2018 \(\le\)\(\le\)2019

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:

Sử dụng BĐT sau:

Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:

$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$

$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)

$\Rightarrow A\geq 4+0=4$

Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$

Hay khi $x=2020$

27 tháng 1 2023

vì sao dấu "=" xảy ra khi ab ≥0 thế ạ ?

 

23 tháng 5 2017

kkkkkkkkkkkkkkkkkk

23 tháng 5 2017

wopdjoqwedi

17 tháng 9 2021

\(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}=-3\)

\(\Rightarrow\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)+\left(\frac{x+4}{2016}+1\right)=0\)

\(\Rightarrow\frac{x+2020}{2018}+\frac{x+2020}{2017}+\frac{x+2020}{2016}=0\)

\(\Rightarrow\left(x+2020\right).\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)

\(\Rightarrow x+2020=0\Rightarrow x=2020\)

12 tháng 12 2021

giúp mình nha

 

17 tháng 3 2018

Tìm giá trị nhỏ nhất của:P=/x-2016/+/x-2017/.

Áp dụng BĐT /a+b/. ≤/a/+/b/. ⇒ P=/x-2016/+/x-2017/= /x-2016/+/2017-x/ lớn hơn hoặc bằng /x-2016+2017-x/=1.

Vậy GTNN của P là 1 <=> 0. ≤(x-2016)(2017-x) <=> 2016. ≤x. ≤2017.