Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(E=\left|x-1\right|+\left|x-9\right|\)
\(E=\left|x-1\right|+\left|9-x\right|\ge\left|x-1+9-x\right|=8\)
Min E = 8
\(\Leftrightarrow1\le x\le9\)
Đặt \(A=\left|x-2018\right|+\left|x-2020\right|\)
\(\ge\left|\left(x-2018\right)+\left(2020-x\right)\right|=2\)
(Dấu "="\(\Leftrightarrow\left(x-2018\right)\left(2020-x\right)\ge0\)
\(\Leftrightarrow2018\le x\le2020\))
Vậy \(A_{min}=2\Leftrightarrow2018\le x\le2020\)
Đặt \(B=\left|x-2019\right|\ge0\)
(Dấu "="\(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\))
Vậy \(B_{min}=0\Leftrightarrow x=2019\)
\(\Rightarrow\left|x-2018\right|+\left|x-2019\right|+\left|x-2020\right|\ge2\)
(Dấu "="\(\Leftrightarrow\hept{\begin{cases}2018\le x\le2020\\x=2019\end{cases}}\Leftrightarrow x=2019\))
Vậy \(BT_{min}=2\Leftrightarrow x=2019\)
Ta có: M = |x - 2018| + |x - 2019| + 2020
M = |x - 2018| + |2019 - x| + 2020 \(\ge\)|x - 2018 + 2019 - x| + 2020 = |1| + 2020 = 2021
Dấu "=" xảy ra khi: x - 2018 + x - 2019 = 0
<=> 2x - 4037 = 0
<=> 2x = 4037
<=> x = 2018,5
Vậy Min của M = 2021 tại x = 2018,5
Sửa lại một đoạn:
Dấu "=" xảy ra khi : (x - 2018)(2019 - x) = 0
<=> 2018 \(\le\)x \(\le\)2019
Lời giải:
Sử dụng BĐT sau:
Cho $a,b$ thực. Khi đó $|a|+|b|\geq |a+b|$. Dấu "=" xảy ra khi $ab\geq 0$. Áp dụng vào bài toán:
$|x-2018|+|x-2022|=|x-2018|+|2022-x|\geq |x-2018+2022-x|=4$
$|x-2020|\geq 0$ (theo tính chất trị tuyệt đối)
$\Rightarrow A\geq 4+0=4$
Vậy GTNN của $A$ là $4$. Giá trị này đạt được khi $(x-2018)(2022-x)\geq 0$ và $x-2020=0$
Hay khi $x=2020$
\(\frac{x+2}{2018}+\frac{x+3}{2017}+\frac{x+4}{2016}=-3\)
\(\Rightarrow\left(\frac{x+2}{2018}+1\right)+\left(\frac{x+3}{2017}+1\right)+\left(\frac{x+4}{2016}+1\right)=0\)
\(\Rightarrow\frac{x+2020}{2018}+\frac{x+2020}{2017}+\frac{x+2020}{2016}=0\)
\(\Rightarrow\left(x+2020\right).\left(\frac{1}{2018}+\frac{1}{2017}+\frac{1}{2016}\right)=0\)
\(\Rightarrow x+2020=0\Rightarrow x=2020\)
Tìm giá trị nhỏ nhất của:P=/x-2016/+/x-2017/.
Áp dụng BĐT /a+b/. ≤/a/+/b/. ⇒ P=/x-2016/+/x-2017/= /x-2016/+/2017-x/ lớn hơn hoặc bằng /x-2016+2017-x/=1.
Vậy GTNN của P là 1 <=> 0. ≤(x-2016)(2017-x) <=> 2016. ≤x. ≤2017.
ai giúp mik vs