Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
\(\Delta=\left(m+2\right)^2-4m=m^2+4>0;\forall m\)
\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m\end{matrix}\right.\)
\(\dfrac{1}{x_1}+\dfrac{1}{x_2}=\dfrac{1}{x_1+x_2-2}\)
\(\Leftrightarrow\dfrac{x_1+x_2}{x_1x_2}=\dfrac{1}{x_1+x_2-2}\)
\(\Leftrightarrow\dfrac{m+2}{m}=\dfrac{1}{m+2-2}\)
\(\Leftrightarrow\dfrac{m+2}{m}=\dfrac{1}{m}\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne0\\m+2=1\end{matrix}\right.\) \(\Rightarrow m=-1\) (thỏa)
2.
\(\Delta'=\left(m-2\right)^2-2\left(2m-6\right)=\left(m-4\right)^2\)
Pt có 2 nghiệm pb khi \(\left(m-4\right)^2>0\Rightarrow m\ne4\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m+2\\x_1x_2=m-3\end{matrix}\right.\)
\(2x_1x_2-\left(x_1-x_2\right)^2=-1\)
\(\Leftrightarrow2x_1x_2-\left(x_1+x_2\right)^2+4x_1x_2=-1\)
\(\Leftrightarrow6\left(m-3\right)-\left(-m+2\right)^2=-1\)
\(\Leftrightarrow-m^2+10m-21=0\Rightarrow\left[{}\begin{matrix}m=3\\m=7\end{matrix}\right.\) (thỏa mãn)
\(D=\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\left(\sqrt{x}-3\right)+7}{\sqrt{x}-3}=2+\dfrac{7}{\sqrt{x}-3}\left(x\ge0;x\ne9\right)\)
Để \(D\) nguyên thì \(2+\dfrac{7}{\sqrt{x}-3}\) nguyên
\(\Rightarrow \dfrac{7}{\sqrt x-3}\) nguyên
\(\Rightarrow7⋮\sqrt{x}-3\)
\(\Rightarrow\sqrt{x}-3\inƯ\left(7\right)\)
\(\Rightarrow\sqrt{x}-3\in\left\{1;7;-1;-7\right\}\)
\(\Rightarrow\sqrt{x}\in\left\{4;10;2;-3\right\}\) mà \(\sqrt{x}\ge0\)
\(\Rightarrow\sqrt{x}\in\left\{4;10;2\right\}\)
\(\Rightarrow x\in\left\{16;100;4\right\}\left(tm.đk.x.nguyên\right)\)
Kết hợp với điều kiện, ta được: \(x\in\left\{4;16;100\right\}\)
\(D=\dfrac{2\sqrt[]{x}+1}{\sqrt[]{x}-3}\in Z\left(x\ge0;x\ne9\right)\)
\(\Leftrightarrow2\sqrt[]{x}+1⋮\sqrt[]{x}-3\)
\(\Leftrightarrow2\sqrt[]{x}+1-2\left(\sqrt[]{x}-3\right)⋮\sqrt[]{x}-3\)
\(\Leftrightarrow2\sqrt[]{x}+1-2\sqrt[]{x}+6⋮\sqrt[]{x}-3\)
\(\Leftrightarrow7⋮\sqrt[]{x}-3\)
\(\Leftrightarrow\sqrt[]{x}-3\in U\left(7\right)=\left\{-1;1;-7;7\right\}\)
\(\Leftrightarrow x\in\left\{4;16;100\right\}\)
\(\Leftrightarrow x=0\Leftrightarrow\left\{{}\begin{matrix}5-m=y\\3+m=y\end{matrix}\right.\Leftrightarrow y=4\Leftrightarrow5-m=4\Leftrightarrow m=1\)
a. \(A\left(2:-3\right)\in\left(d\right)\Rightarrow-3=4m-2+2m+5\)
\(\Rightarrow m=\dfrac{3}{2}\)
\(3.y=\left(2m-1\right)x-2m+5\left(m\ne\dfrac{1}{2}\right)\)
\(\left(2;-3\right)\in\left(d\right)\Rightarrow-3=\left(2m-1\right).2-2m+5\Leftrightarrow m=-3\left(tm\right)\)
\(b,\left(d\right)//\left(d'\right)\Rightarrow\left\{{}\begin{matrix}2m-1=2\\-2m+5\ne1\\\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m=1,5\left(tm\right)\\m\ne2\end{matrix}\right.\)
\(\Rightarrow\left(d\right):y=2x+2\)\(đi-qua-A\left(0;2\right),B\left(-1;0\right)\Rightarrow\cos\left(\alpha\right)=\dfrac{\left|OB\right|}{\left|OA\right|}=\dfrac{\left|-1\right|}{2}\Rightarrow\alpha=60^o\)
\(c,gọi-điểm-cố-định-làC\left(xo;yo\right)\Rightarrow\left(2m-1\right)xo-2m+5=yo\)
\(\Leftrightarrow2mxo-xo-2m+5-yo=0\)
\(\Leftrightarrow2m\left(xo-1\right)-xo-yo+5=0\Rightarrow\left\{{}\begin{matrix}xo=1\\yo=4\end{matrix}\right.\)
\(\Rightarrow C\left(1;4\right)là-điểm-cố-định\)
\(\)
a: Ta có: \(P=\left(\dfrac{x\sqrt{x}-1}{x-\sqrt{x}}-\dfrac{x\sqrt{x}+1}{x+\sqrt{x}}+\dfrac{x+1}{\sqrt{x}}\right):\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)\)
\(=\dfrac{x+\sqrt{x}+1-x+\sqrt{x}-1+x+1}{\sqrt{x}}:\dfrac{x-1}{\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{x-1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
\(B=\sqrt{14+2\sqrt{10}+2\sqrt{14}+2\sqrt{35}}\)
\(=\sqrt{2}+\sqrt{5}+\sqrt{7}\)
\(ac=-\dfrac{1}{2}< 0\Rightarrow\) pt luôn có 2 nghiệm phân biệt trái dấu
Do \(x_1< x_2\Rightarrow\left\{{}\begin{matrix}x_1< 0\\x_2>0\\\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=-x_1\\\left|x_2\right|=x_2\end{matrix}\right.\)
Đồng thời theo Viet: \(x_1+x_2=m\)
Ta có:
\(\left|x_2\right|-\left|x_1\right|=2021\)
\(\Leftrightarrow x_2-\left(-x_1\right)=2021\)
\(\Leftrightarrow x_1+x_2=2021\)
\(\Leftrightarrow m=2021\)