Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
3=1.3 =>{(x+3);(y+1)}\(\in\){(1;3);(3;1)}
x+3 | 1 | 3 |
y+1 | 3 | `1 |
x | -2 | 0 |
y | 2 | 0 |
vậy : (x;y)=(-2;2);(0;0)
Học tốt ^-^
\(\left(x+3\right).\left(y-1\right)=3\)
<=> \(\left(x+3\right),\left(y-1\right)\inƯ\left(3\right)\)
Ta có bảng sau:
x+3 | x | y+1 | y |
3 | 0 | 1 | 0 |
1 | -2 | 3 | 2 |
-1 | -4 | -3 | -4 |
-3 | -6 | -1 | -2 |
Vậy các cặp x,y thỏa mãn là:
\(\left\{\left(0,0\right);\left(-2,2\right);\left(-4,-4\right);\left(-6,-2\right)\right\}\)
\(\left(2x-15\right)^5=\left(2x-15\right)^3\)
\(\Rightarrow\left(2x-15\right)^5-\left(2x-15\right)^3=0\)
\(\Rightarrow\left(2x-15\right)^3\left[\left(2x-15\right)^2-1\right]=0\)
\(\Rightarrow\left(2x-15\right)^3\left(2x-15-1\right)\left(2x-15+1\right)=0\)
\(\Rightarrow\left(2x-15\right)^3\left(2x-16\right)\left(2x-14\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x-15=0\\2x-16=0\\2x-14=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=15\\2x=16\\2x=14\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{15}{2}\\x=8\\x=7\end{matrix}\right.\)
\(3^x+4\cdot3^{x-2}=333\)
\(\Rightarrow3^{x-2+2}+4\cdot3^{x-2}=333\)
\(\Rightarrow3^{x-2}\cdot\left(3^2+4\right)=333\)
\(\Rightarrow3^{x+2}\cdot\left(9+4\right)=333\)
\(\Rightarrow3^{x+2}\cdot13=333\)
\(\Rightarrow3^{x+2}=333:13\)
\(\Rightarrow3^{x+2}=\dfrac{333}{13}\)
Không có x nào thỏa mãn
⇒ x ∈ ∅
Bài 9:
\(\Leftrightarrow\dfrac{x}{5}=\dfrac{y}{-3}=\dfrac{z}{-17}=\dfrac{t}{9}=-2\)
=>x=-10; y=6; z=34; t=-18
Bài 10:
\(\Leftrightarrow\dfrac{8}{x}=\dfrac{y}{21}=\dfrac{40}{z}=\dfrac{16}{t}=\dfrac{u}{111}=\dfrac{4}{3}\)
=>x=6; y=28; z=30; t=12; u=148
b: \(=\dfrac{2^{10}\cdot2^2\cdot13+2^{12}\cdot5\cdot13}{2^{11}\cdot2^2\cdot13}+\dfrac{3^{10}\cdot11+3^{10}\cdot5}{3^9\cdot2^4}\)
\(=\dfrac{2^{12}\cdot13\left(1+5\right)}{2^{13}\cdot13}+\dfrac{3^{10}\left(11+5\right)}{3^9\cdot2^4}\)
\(=\dfrac{2^{13}\cdot3}{2^{13}}+\dfrac{3^{10}\cdot16}{3^9\cdot2^4}=3+3=6\)
2: \(C=\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2023^2}\)
=>\(C< \dfrac{1}{2^2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\)
=>\(C< \dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{2023}=\dfrac{6065}{8092}< \dfrac{6069}{8092}=\dfrac{3}{4}\)
a) \(\dfrac{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{9}}{\dfrac{4}{3}+\dfrac{4}{5}-\dfrac{4}{9}}\)
\(=\dfrac{2\left(\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{9}\right)}{4\left(\dfrac{1}{3}+\dfrac{1}{5}-\dfrac{1}{9}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
b) \(\dfrac{\dfrac{3}{4}+\dfrac{3}{7}-\dfrac{3}{8}}{\dfrac{5}{4}+\dfrac{5}{7}-\dfrac{5}{8}}+1\)
\(=\dfrac{3\left(\dfrac{1}{4}+\dfrac{1}{7}-\dfrac{1}{8}\right)}{5\left(\dfrac{1}{4}+\dfrac{1}{7}-\dfrac{1}{8}\right)}+1\)
\(=\dfrac{3}{5}+1=\dfrac{8}{5}\)
c) \(\dfrac{4+\dfrac{4}{73}-\dfrac{4}{115}}{5+\dfrac{5}{73}-\dfrac{5}{115}}\)
\(=\dfrac{4\left(1+\dfrac{1}{73}-\dfrac{1}{115}\right)}{5\left(1+\dfrac{1}{73}-\dfrac{1}{115}\right)}=\dfrac{4}{5}\)