Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
=>AB/HB=AC/HA
=>AB*HA=HB*AC
b: AH=căn 5^2-3^2=4cm
BI là phân giác
=>HI/HB=IA/AB
=>HI/3=IA/5=(HI+IA)/(3+5)=0,5
=>HI=1,5cm; IA=1,5cm
a)\(x\left(x-3\right)-2x+6=0\)
\(\Leftrightarrow x\left(x-3\right)-2\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
b)\(\left(3x-5\right)\left(5x-7\right)+\left(5x+1\right)\left(2-3x\right)=4\)
\(\Leftrightarrow15x^2-46x+35-15x^2+7x+2-4=0\)
\(\Leftrightarrow33-39x=0\Leftrightarrow33=39x\Leftrightarrow x=\frac{33}{39}\)
a) \(x\left(x-3\right)-2x+6=0\)
\(x\left(x-3\right)-2\left(x-3\right)=0\)
\(\left(x-3\right)\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)
b) \((3x-5)(5x-7)+(5x+1)(2-3x)=4\)
\(15x^2-46x+35+10x-15x^2+2-3x-4=0\)
\(33-39x=0\)
\(3\left(11-13x\right)=0\)
\(11-13x=0\)
\(13x=11\)
\(x=\frac{11}{13}\)
c) \(=\left(4x-3\right)^2-\left(9x^2-4\right)\)
\(=16x^2-24x+9-9x^2+4=7x^2-24x+13\)
d) \(=\left(x^2-3x+2\right)\left(x+3\right)-\left(x^3-5x^2\right)\)
\(=x^3+3x^2-3x^2-9x+2x+6-x^3+5x^2\)
\(=5x^2-7x+6\)
c. (4x - 3)(4x - 3) - (3x + 2)(3x - 2)
= (4x - 3)2 - (9x2 - 4)
= 16x2 - 24x + 9 - 9x2 + 4
= 16x2 - 9x2 - 24x + 9 + 4
= 7x2 - 24x + 13
d. (x - 2)(x - 1)(x + 3) - x2(x - 5)
= (x2 - 1 - 2x + 2)(x + 3) - x2(x - 5)
= x3 + 3x2 - x - 3 - 2x2 - 6x + 2x + 6 - x3 + 5
= x3 - x3 + 3x2 - 2x2 - x - 6x + 2x + 6 + 5 - 3
= x2 - 5x + 8
1: \(=\dfrac{\dfrac{x^2+y^2-2xy}{xy}}{\dfrac{x^2-y^2}{xy}}\)
\(=\dfrac{\left(x-y\right)^2}{xy}:\dfrac{\left(x-y\right)\left(x+y\right)}{xy}=\dfrac{x-y}{x+y}\)
2: \(=\dfrac{x^2-1+x^2}{x\left(x+1\right)}:\dfrac{x^2-x^2+1}{x\left(x+1\right)}\)
\(=\dfrac{2x^2-1}{1}=2x^2-1\)
a) Diện tích xung quanh của khối rubik là:
\(\dfrac{1}{2}\cdot234\cdot67,5=7897,5\left(mm^2\right)\)
Diện tích mỗi mặt của khối rubik là:
\(7897,5:3=2632,5\left(mm^2\right)\)
Diện tích toàn phần của khối rubik là:
\(2632,5\cdot4=10530\left(mm^2\right)\)
\(---\)
b) Thể tích của khối rubik là:
\(\dfrac{1}{3}\cdot2632,5\cdot63,7=55896,75\left(mm^3\right)\)
Vậy: ...
#\(Toru\)
a) đk: \(x\ne\left\{1;2\right\}\)
Ta có: \(1+\frac{2x-5}{x-2}-\frac{3x-5}{x-1}=0\)
\(\Leftrightarrow\frac{\left(x-1\right)\left(x-2\right)+\left(2x-5\right)\left(x-1\right)-\left(3x-5\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=0\)
\(\Rightarrow x^2-3x+2+2x^2-7x+5-3x^2+11x-10=0\)
\(\Leftrightarrow x-3=0\Rightarrow x=3\)
Vậy x = 3
b) đk: \(x\ne\left\{0;2\right\}\)
Ta có: \(\frac{x+2}{x-2}-\frac{2}{x^2-2x}=\frac{1}{x}\)
\(\Leftrightarrow\frac{\left(x+2\right)x-2}{\left(x-2\right)x}=\frac{x-2}{\left(x-2\right)x}\)
\(\Rightarrow x^2+2x-2=x-2\)
\(\Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\) vì x khác 0 nên
=> \(x+1=0\Rightarrow x=-1\)
Vậy x = -1
c) đk: \(x\ne\pm3\)
Ta có: \(\frac{x+2}{x-3}+\frac{x-2}{x+3}-\frac{2\left(x^2+6\right)}{x^2-9}=0\)
\(\Leftrightarrow\frac{\left(x+2\right)\left(x+3\right)+\left(x-2\right)\left(x-3\right)-2\left(x^2+6\right)}{\left(x-3\right)\left(x+3\right)}=0\)
\(\Rightarrow x^2+5x+6+x^2-5x+6-2x^2-12=0\)
\(\Leftrightarrow0x=0\) (luôn đúng)
Vậy mọi x thực thỏa mãn đk thì PT luôn có nghiệm
d) đk: \(x\ne-1\)
Ta có: \(\frac{-7x^2+4}{x^3+1}=\frac{5}{x^2-x+1}-\frac{1}{x+1}\)
\(\Leftrightarrow\frac{-7x^2+4}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{5\left(x+1\right)-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(\Rightarrow-7x^2+4=5x+5-x^2+x-1\)
\(\Leftrightarrow6x^2+6x=0\)
\(\Leftrightarrow6x\left(x+1\right)=0\) vì x + 1 khác 0
=> x = 0
Vậy x = 0