Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\frac{x+3}{y+4}=\frac{3}{4}\)
\(< =>\frac{x+3}{3}=\frac{y+4}{4}< =>\frac{x}{3}+1=\frac{y}{4}+1\)
\(< =>\frac{x}{3}=\frac{y}{4}\)
Theo tinh chat cua day ti so bang nhau ta co
\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{21}{7}=3\)
\(=>\hept{\begin{cases}x=3.3=9\\y=4.3=12\end{cases}}\)
a)
\(\frac{x+3}{y+4}=\frac{3}{4}\)
\(\Leftrightarrow\frac{x+3}{3}=\frac{y+4}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau :
\(\frac{x+3}{3}=\frac{y+4}{4}=\frac{x+y+3+4}{3+4}=\frac{28}{7}=4\)
Do đó
\(\frac{x+3}{3}=4\Rightarrow x+3=12\Rightarrow x=9\)
\(\frac{y+4}{4}=4=>y+4=16\Rightarrow y=12\)
B=ax.by⇒B2=a2x.b2yB=ax.by⇒B2=a2x.b2y ; B3=a3x.a3yB3=a3x.a3y
⇒⇒ số ước số tự nhiên của B2B2 là (2x+1)(2y+1)(2x+1)(2y+1)
⇒(2x+1)(2y+1)=15⇒(2x+1)(2y+1)=15
⇒⇒{2x+1=32y+1=5{2x+1=32y+1=5 ⇒{x=1y=2⇒{x=1y=2 hoặc {2x+1=52y+1=3{2x+1=52y+1=3 ⇒{x=2y=1⇒{x=2y=1
⇒⇒ số ước của B3B3 là (3x+1)(3y+1)=4.7=28
Ta thấy : \(\left(x-y^2+z\right)^2\ge0\forall x,y,z\)
\(\left(y-2\right)^2\ge0\forall y\)
\(\left(z+3\right)^2\ge0\forall z\)
Do đó : \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2\ge0\forall x,y,z\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-2^2+\left(-3\right)=0\\y=2\\z=-3\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=7\\y=2\\z=-3\end{cases}}\)
Vậy : \(\left(x,y,z\right)=\left(7,2,-3\right)\)
ta co -2*3=x*y=-6
ta co -6=-1*6=-2*3
ma x<0 x thuoc (-2;-1)
y>0 y thuoc (3;6)
thấy đúng thì nha
mk chỉ tiềm đc bài i hệt bài của bn
https://olm.vn/hoi-dap/detail/99402078680.html
a. Vì \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|\ge0\forall x\\\left|y-\frac{3}{4}\right|\ge0\forall y\\\left|z-1\right|\ge0\forall z\end{cases}}\)=> | x +\(\frac{1}{2}\)| + | y -\(\frac{3}{4}\)| + | z - 1 |\(\ge\)0\(\forall\)x ; y ; z
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\left|x+\frac{1}{2}\right|=0\\\left|y-\frac{3}{4}\right|=0\\\left|z-1\right|=0\end{cases}}\)<=>\(\hept{\begin{cases}x=-\frac{1}{2}\\y=\frac{3}{4}\\z=1\end{cases}}\)
Vậy x = - 1/2 ; y = 3/4 ; z = 1
Câu b,c bạn làm tương tự nhé
đề????
TÌM x,y \(\in\) Z