K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 8 2021

2.

Xét khai triển:

\(\left(1+x\right)^{2017}=C_{2017}^0+C_{2017}^1.x+C_{2017}^2x^2+...+C_{2017}^{2017}x^{2017}\)

Cho \(x=1\) ta được:

\(2^{2017}=C_{2017}^0+C_{2017}^1+...+C_{2017}^{2017}\)

\(\Rightarrow C_{2017}^1+C_{2017}^2+...+C_{2017}^{2017}=2^{2017}-C_{2017}^0=2^{2017}-1\)

3.

Xét khai triển:

\(\left(1+x\right)^{10}=C_{10}^0+C_{10}^1x+...+C_{10}^{10}x^{10}\)

Thay \(x=2\) ta được:

\(3^{10}=C_{10}^0+2C_{10}^1+2^2C_{10}^2+...+2^{10}C_{10}^{10}\)

\(\Rightarrow S=3^{10}\)

NV
19 tháng 8 2021

4.

Xét khai triển:

\(\left(1+x\right)^{15}=C_{15}^0+C_{15}^1x+...+C_{15}^{15}x^{15}\)

Thay \(x=1\) ta được:

\(2^{15}=C_{15}^0+C_{15}^1+...+C_{15}^{15}\)

Mặt khác, áp dụng công thức: \(C_n^k=C_n^{n-k}\) ta có:

\(C_{15}^0=C_{15}^{15}\)

\(C_{15}^1=C_{15}^{14}\)

...

\(C_{15}^7=C_{15}^8\)

Cộng vế:

\(C_{15}^0+C_{15}^1+...+C_{15}^7=C_{15}^8+C_{15}^9+...+C_{15}^{15}\)

\(\Rightarrow C_{15}^0+C_{15}^1+...+C_{15}^{15}=2\left(C_{15}^8+C_{15}^9+...+C_{15}^{15}\right)\)

\(\Rightarrow2S=2^{15}\)

\(\Rightarrow S=2^{14}\)

21 tháng 1 2018

Đáp án A

Xác suất để Anh được  điểm bằng xác suất Anh trả lời đúng câu trong  câu còn lại bằng

NV
24 tháng 8 2021

1.

\(\left\{{}\begin{matrix}x_{A'}=x_A+\left(-1\right)=2\\y_{A'}=y_A+3=0\end{matrix}\right.\) \(\Rightarrow A'\left(2;0\right)\)

2.

\(\overrightarrow{MP}=\left(4;2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_{N'}=x_N+4=-4+4=0\\y_{N'}=y_N+2=1+2=3\end{matrix}\right.\)

\(\Rightarrow N'\left(0;3\right)\)

3.

\(\overrightarrow{MM'}=\left(13;7\right)\Rightarrow\overrightarrow{v}=\overrightarrow{MM'}=\left(13;7\right)\)

4.

\(\overrightarrow{MN}=\left(-2;-1\right)\Rightarrow MN=\sqrt{\left(-2\right)^2+\left(-1\right)^2}=\sqrt{5}\)

\(\Rightarrow M'N'=MN=\sqrt{5}\)

5.

Gọi G là trọng tâm ABC \(\Rightarrow G\left(2;1\right)\)

\(\overrightarrow{BC}=\left(-6;-3\right)\)

\(\Rightarrow\left\{{}\begin{matrix}x_{G'}=2-6=-4\\y_{G'}=1-3=-2\end{matrix}\right.\) \(\Rightarrow G'\left(-4;-2\right)\)

19 tháng 9 2018

Số cách chọn ra 10 câu hỏi bất kỳ trong số 20 câu hỏi đã cho là .

+ Tiếp theo ta đếm số cách chọn ra 10 câu hỏi mà không có đủ cả ba loại câu hỏi ở trên:

Phương án 1: Trong 10 câu hỏi chọn ra chỉ bao gồm câu hỏi dễ và trung bình:  cách.

Phương án 2: Trong 10 câu hỏi chọn ra chỉ bao gồm câu hỏi dễ và khó:  cách.

Phương án 1: Trong 10 câu hỏi chọn ra chỉ bao gồm câu hỏi trung bình và khó:  cách.

Từ đó suy ra số lượng đề thỏa mãn yêu cầu có thể lập được là:

 

Chọn A.

19 tháng 9 2017

Đáp án D.

- Loại 1: Chọn 10 câu tùy ý có cách.

- Loại 2: Chọn 10 câu có không quá 2 trong 3 loại dễ, trung bình, khó.

+ Chọn 10 câu dễ và trung bình trong 16 câu có cách.

+ Chọn 10 câu dễ và khó trong 12 câu có cách.

+ Chọn 10 câu trung bình và khó trong 12 câu có cách.

Vậy số cách chọn đề kiểm tra theo yêu cầu đề bài là:

NV
15 tháng 2 2022

7.

\(\lim\left(3.4^n-5^n\right)=\lim5^n\left(3.\left(\dfrac{4}{5}\right)^n-1\right)=+\infty.\left(-1\right)=-\infty\)

8.

\(\lim\dfrac{n^2+n-1}{3n+2}=\lim\dfrac{n^2\left(1+\dfrac{1}{n}-\dfrac{1}{n^2}\right)}{n\left(3+\dfrac{2}{n}\right)}=\lim\dfrac{n\left(1+\dfrac{1}{n}-\dfrac{1}{n^2}\right)}{3+\dfrac{2}{n}}=\dfrac{+\infty}{3}=+\infty\)

10 tháng 2 2018

* Loại 1: Chọn 10 câu tùy ý trong 20 câu có C 20 10  cách.

* Loại 2: Chọn 10 câu có không quá 2 trong 3 loại dễ, trung bình và khó.

 +) Chọn 10 câu dễ và trung bình trong 16 câu có C 16 10  cách.

 +) Chọn 10 câu dễ và khó trong 13 câu có C 13 10  cách.

 +) Chọn 10 câu trung bình và khó trong 11 câu có C 11 10  cách.

Vậy có C 20 10 − C 16 10 + C 13 10 + C 11 10 = 176451  đề kiểm tra thỏa  mãn đầu bài

Chọn đáp án C