Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
j, ĐK: \(x\ne\dfrac{\pi}{6}+\dfrac{k\pi}{2}\)
\(tan\left(\dfrac{\pi}{3}+x\right)-tan\left(\dfrac{\pi}{6}+2x\right)=0\)
\(\Leftrightarrow tan\left(\dfrac{\pi}{3}+x\right)=tan\left(\dfrac{\pi}{6}+2x\right)\)
\(\Leftrightarrow\dfrac{\pi}{3}+x=\dfrac{\pi}{6}+2x+k\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\left(l\right)\)
\(\Rightarrow\) vô nghiệm.
a, \(u_n=u_1.q^{n-1}\)
\(\Leftrightarrow192=u_1.2^n\)
\(\Leftrightarrow u_1=\dfrac{192}{2^n}\)
\(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}\)
\(\Leftrightarrow189=\dfrac{\dfrac{192}{2^n}\left(1-2^n\right)}{1-2}\)
\(\Leftrightarrow189=192-\dfrac{192}{2^n}\)
\(\Leftrightarrow\dfrac{192}{2^n}=3\)
\(\Leftrightarrow2^n=2^6\)
\(\Rightarrow n=6\)
d: ĐKXĐ: 2sin x+1<>0
=>sin x<>-1/2
=>x<>-pi/6+k2pi và x<>7/6pi+k2pi
c: ĐKXĐ: \(4\sqrt{2}\cdot sinx\cdot cosx+\sqrt{6}< >0\)
=>\(2\sqrt{2}\cdot sin2x+\sqrt{6}< >0\)
=>\(2sin2x+\sqrt{3}\ne0\)
=>\(sin2x\ne-\dfrac{\sqrt{3}}{2}\)
=>2x<>-pi/3+k2pi và 2x<>4/3pi+k2pi
=>x<>-pi/6+kpi và x<>2/3pi+kpi
d) \(y=4sinx-2cos2x-1\)
\(=4sinx-2\left(1-2sin^2x\right)-1\)
\(=4sin^2x+4sinx-3\)
Đặt \(t=sinx,t\in\left[-1;1\right]\)
\(y=f\left(t\right)=4t^2+4t-3\) \(\Leftrightarrow f'\left(t\right)=8t+4\)
\(f'\left(t\right)=0\Leftrightarrow t=-\dfrac{1}{2}\)
Vẽ BBT với \(t\in\left[-1;1\right]\) ta được
\(minf\left(t\right)=miny=-4\Leftrightarrow t=-\dfrac{1}{2}\)\(\Leftrightarrow sinx=-\dfrac{1}{2}\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\) ( k thuộc Z)
\(maxf\left(t\right)=miny=5\Leftrightarrow t=1\)\(\Leftrightarrow sinx=1\) \(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\) ( k thuộc Z)
Vậy...
e) \(y=3sin2x+8cos^2x-1\)
\(=3sin2x+4\left(2cos^2x-1\right)+3\)
\(=3sin2x+4cos2x+3\)
\(=5\left(\dfrac{3}{5}sin2x+\dfrac{4}{5}cos2x\right)+3\)
Đặt \(cosu=\dfrac{3}{5}\Leftrightarrow sinu=\dfrac{4}{5}\)
\(y=5\left(sin2x.cosu+cos2x.sinu\right)+3=5.sin\left(2x+u\right)+3\)
Có \(-1\le sin\left(2x+u\right)\le1\) \(\Leftrightarrow-2\le y\le8\)
\(maxy=8\Leftrightarrow sin\left(2x+u\right)=1\) \(\Leftrightarrow2x+u=\dfrac{\pi}{2}+k2\pi\) \(\Leftrightarrow x=-\dfrac{u}{2}+\dfrac{\pi}{4}+k\pi\)\(\Leftrightarrow x=-\dfrac{1}{2}.arccos\dfrac{3}{5}+\dfrac{\pi}{4}+k\pi\) ( k thuộc Z)
\(miny=-2\Leftrightarrow sin\left(2x+u\right)=-1\)\(\Leftrightarrow x=-\dfrac{1}{2}.\dfrac{arccos3}{5}-\dfrac{\pi}{4}+k\pi\) ( k thuộc Z)
Vậy...
Câu 1 : a . \(lim\dfrac{9n^2-3n-1}{7n^3+3n^2}=lim\dfrac{\dfrac{9}{n}-\dfrac{3}{n^2}-\dfrac{1}{n^3}}{7+\dfrac{3}{n}}=0\)
b. \(lim_{x\rightarrow2}\dfrac{\sqrt{4x+1}-3}{4-x^2}=lim_{x\rightarrow2}\dfrac{4x+1-9}{\left(\sqrt{4x+1}+3\right)\left(4-x^2\right)}\)
\(=lim_{x\rightarrow2}\dfrac{4\left(x-2\right)}{\left(\sqrt{4x+1}+3\right)\left(2-x\right)\left(2+x\right)}\)
\(=lim_{x\rightarrow2}\dfrac{-4}{\left(\sqrt{4x+1}+3\right)\left(2+x\right)}=\dfrac{-4}{\left(3+3\right)\left(2+2\right)}=-\dfrac{1}{6}\)
Câu 2 : Ta có : f(x) = \(\left\{{}\begin{matrix}2x^2+x\left(x< 2\right)\\mx-1\left(x\ge2\right)\end{matrix}\right.\)
TXĐ : D = R . Với x < 2 ; hàm số liên tục
Với x > 2 ; hàm số liên tục
Với x = 2 , ta có : \(lim_{x\rightarrow2^-}f\left(x\right)=lim_{x\rightarrow2^-}2x^2+x=2.2^2+2=10\)
\(lim_{x\rightarrow2^+}f\left(x\right)=lim_{x\rightarrow2^+}mx-1=2m-1\)
Hàm số liên tục trên R <=> Hàm số liên tục tại x = 2
\(\Leftrightarrow lim_{x\rightarrow2^-}f\left(x\right)=lim_{x\rightarrow2^+}f\left(x\right)\)
\(\Leftrightarrow10=2m-1\) \(\Leftrightarrow m=\dfrac{11}{2}\)
Vậy ...
a.
Theo tính chất lập phương, \(CC'\perp\left(ABCD\right)\Rightarrow AC\) là hình chiếu vuông góc của \(AC'\) lên (ABCD)
\(\Rightarrow\widehat{C'AC}\) là góc giữa AC' và (ABCD)
\(AC=\sqrt{AB^2+BC^2}=4\sqrt{2}\)
\(\Rightarrow tan\widehat{C'AC}=\dfrac{CC'}{AC}=\dfrac{1}{\sqrt{2}}\Rightarrow\widehat{C'AC}\approx35^016'\)
b.
Theo t/c lập phương, \(CD\perp\left(BCB'\right)\)
Mà CD là giao tuyến (A'B'CD) và (ABCD)
\(\Rightarrow\widehat{BCB'}\) là góc giữa (A'B'CD) và (ABCD)
\(tan\widehat{BCB'}=\dfrac{BB'}{BC}=\dfrac{4}{4}=1\Rightarrow\widehat{BCB'}=45^0\)
c.
\(AA'\perp\left(A'B'C'D'\right)\Rightarrow AA'\perp A'P\Rightarrow\Delta MA'P\) vuông tại A'
\(\Rightarrow MP=\sqrt{A'M^2+A'P^2}=\sqrt{A'M^2+A'D'^2+D'P^2}\)
\(=\sqrt{2^2+4^2+2^2}=2\sqrt{6}\left(cm\right)\)
Tương tự:
\(MN=\sqrt{AM^2+AB^2+BN^2}=2\sqrt{6}\left(cm\right)\)
\(NP=\sqrt{C'P^2+C'C^2+CN^2}=2\sqrt{6}\left(cm\right)\)
\(\Rightarrow MN=MP=NP\Rightarrow\Delta MNP\) đều
\(\Rightarrow S_{\Delta MNP}=\dfrac{MN^2\sqrt{3}}{4}=6\sqrt{3}\left(cm^2\right)\)
d.
Gọi Q là trung điểm CD \(\Rightarrow PQ\perp\left(ABCD\right)\)
\(\Rightarrow\Delta ANQ\) là hình chiếu vuông góc của tam giác MNP lên (ABCD)
\(S_{\Delta ANQ}=S_{ABCD}-S_{ADQ}-S_{ABN}-S_{CNQ}\)
\(=AB^2-\dfrac{1}{2}AD.DQ-\dfrac{1}{2}AB.BN-\dfrac{1}{2}CQ.CN\)
\(=4^2-\dfrac{1}{2}.4.2-\dfrac{1}{2}.4.2-\dfrac{1}{2}.2.2=6\left(cm^2\right)\)
\(\Rightarrow cos\alpha=\dfrac{S_{AQN}}{S_{MNP}}=\dfrac{6}{6\sqrt{3}}=\dfrac{1}{\sqrt{3}}\Rightarrow\alpha\approx54^044'\)
1.
a, \(sin2x-\sqrt{3}cos2x=-1\)
\(\Leftrightarrow\dfrac{1}{2}sin2x-\dfrac{\sqrt{3}}{2}cos2x=-\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=-\dfrac{1}{2}\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{3}\right)=sin\left(-\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=-\dfrac{\pi}{6}+k2\pi\\2x-\dfrac{\pi}{3}=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{12}+k\pi\\x=\dfrac{3\pi}{4}+k\pi\end{matrix}\right.\)
Do tổng các hệ số thứ 1,2,3 là 46 nên ta có:\(C_n^0+C_n^1+C_n^2=46\)
\(\Leftrightarrow1+\dfrac{n!}{1!\left(n-1\right)!}+\dfrac{n!}{2!\left(n-2\right)!}=46\)
\(\Leftrightarrow1+n+\dfrac{\left(n-1\right)n}{2}=46\)
\(\Leftrightarrow n^2+n-90=0\)
\(\Leftrightarrow\left[{}\begin{matrix}n=9\\n=-10\left(loai\right)\end{matrix}\right.\)
Khai triển biểu thức: \(\left(x+\dfrac{1}{x}\right)^9\)
Hạng tử thứ k+1 trong biểu thức trên
\(\left(x+\dfrac{1}{x}\right)^9=C_9^{k+1}+\left(x^2\right)^{10-k}.\left(\dfrac{1}{x}\right)^{k+1}\)
đến đây mình chịu rùi hjhj b nào làm được giúp b kia với
a, \(2sin^2x+\sqrt{3}sin2x=3\)
\(\Leftrightarrow-\left(1-2sin^2x\right)+\sqrt{3}sin2x=2\)
\(\Leftrightarrow\sqrt{3}sin2x-cos2x=2\)
\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sin2x-\dfrac{1}{2}cos2x=1\)
\(\Leftrightarrow sin\left(2x-\dfrac{\pi}{6}\right)=1\)
\(\Leftrightarrow2x-\dfrac{\pi}{6}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{3}+k\pi\)
d, \(cosx-\sqrt{3}sinx=2cos\left(\dfrac{\pi}{3}-x\right)\)
\(\Leftrightarrow\dfrac{1}{2}cosx-\dfrac{\sqrt{3}}{2}sinx=cos\left(\dfrac{\pi}{3}-x\right)\)
\(\Leftrightarrow cos\left(x+\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{3}-x\right)\)
\(\Leftrightarrow-2sin\dfrac{\pi}{3}.sinx=0\)
\(\Leftrightarrow sinx=0\)
\(\Leftrightarrow x=k\pi\)