Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: Xét tứ giác OBAC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: OBAC là tứ giác nội tiếp
b: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó: AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥BC
c: Xét ΔOBA vuông tại B có BA là đường cao
nên \(OH\cdot OA=OB^2=R^2\)
Phương trình hoành độ giao điểm:
\(x^2=2\left(m-1\right)x-m+2\Leftrightarrow x^2-2\left(m-1\right)x+m-2=0\) (1)
a.
(d) cắt (P) tại 2 điểm nằm về 2 phía trục tung khi và chỉ khi (1) có 2 nghiệm pb trái dấu
\(\Leftrightarrow ac=m-2< 0\)
\(\Rightarrow m< 2\)
b.
Xét (1), ta có \(\Delta'=\left(m-1\right)^2-\left(m-2\right)=m^2-3m+3=\left(m-\dfrac{3}{2}\right)^2+\dfrac{3}{4}>0;\forall m\)
\(\Rightarrow\left(1\right)\) có 2 nghiệm pb với mọi m
Hay (d) luôn cắt (P) tại 2 điểm pb với mọi m
6:
1: BH=căn 15^2-12^2=9cm
BC=15^2/9=25cm
AC=căn 25^2-15^2=20cm
C ABC=15+20+25=60cm
XétΔHAB vuông tại H có sin BAH=BH/AB=9/15=3/5
nên góc BAH=37 độ
2: ΔABC vuông tại A có AH là đường cao
nên CA^2=CH*CB
ΔCAH vuông tại H có HF là đường cao
nên CF*CA=CA^2=CH*CB
3: Xét tứ giác AFHB có
HF//AB
góc AFH=90 độ
=>AFHB là hình thang vuông
\(1,\\ 1,M=6+5=11\\ N=\sqrt{5}-1-\sqrt{5}=-1\\ 2,\\ a,P=1+\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\left(x\ge0;x\ne1\right)\\ P=1+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}=1+\sqrt{x}\\ b,P>3\Leftrightarrow1+\sqrt{x}>3\\ \Leftrightarrow\sqrt{x}>2\Leftrightarrow x>4\)
Bài 5:
a: \(=\dfrac{a+2\sqrt{a}+a-2\sqrt{a}}{a-4}\cdot\dfrac{a-4}{2\sqrt{a}}=\dfrac{2a}{2\sqrt{a}}=\sqrt{a}\)
b: Để A-2>0 thì căn a-2>0
=>căn a>2
=>a>4
c: Để 4/A+1 là số nguyên thì \(\sqrt{a}+1\inƯ\left(4\right)\)
=>\(\sqrt{a}+1\in\left\{1;2;4\right\}\)
=>\(a\in\left\{1;9\right\}\)
b: Xét ΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay AH=12(cm)
Xét ΔAHB vuông tại H có
\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AH}{AB}=\dfrac{12}{13}\)
\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{5}{13}\)
\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{12}{5}\)
\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{5}{12}\)