Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b1:
AMF đồng dạng ABC
tỉ số : AM/AF = AB/AC
AM/MF = AB/BC
AF/FM = AC/CB
MFD đồng dạng CFD
tỉ số : MF/FD= FD/DC
FM/MD = DC/CF
FD/DM = DF/FC
AFB đồng dạng CFB
tỉ số : AB/ BF = BF/FC
AF/AB =BF/ BC
AF / FB = CF/BC
a) Xét tứ giác AEHF có
\(\widehat{FAE}=90^0\)
\(\widehat{AEH}=90^0\)
\(\widehat{AFH}=90^0\)
Do đó: AEHF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
b) Ta có: ΔEHB vuông tại E(gt)
mà EN là đường trung tuyến ứng với cạnh huyền HB(N là trung điểm của HB)
nên \(EN=\dfrac{HB}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)
Gọi vận tốc của ô tô khách là \(x\left(x>0\right)\)
\(\Leftrightarrow\) Vận tốc của ô tô con là \(x+5\)
Quãng đường ô tô khách đi từ A đến lúc gặp nhau là : \(3x\left(km\right)\)
Quãng đường ô tô con đi từ B đến lúc gặp nhau là : \(3\left(x+5\right)\left(km\right)\)
Độ dài quãng AB là \(185km\)
\(\Leftrightarrow3x+3\left(x+5\right)=185\)
\(\Leftrightarrow6x+15=185\)
\(\Leftrightarrow x=\dfrac{85}{3}\)
Vậy....
a: Xét ΔAHB vuông tại H và ΔCAB vuông tại A có
góc B chung
DO đó: ΔAHB\(\sim\)ΔCAB
Suy ra: AH/CA=AB/CB
hay \(AH\cdot BC=AB\cdot AC\)
b: Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)
nên ADHE là hình chữ nhật
c: BC=15cm
=>AH=7,2(cm)
mà AH=DE
nên DE=7,2(cm)
a) Xét \(\Delta AHB\) và \(\Delta CAB:\)
\(\widehat{AHB}=\widehat{CAB}\left(=90^o\right).\\ \widehat{ABH}chung.\\ \Rightarrow\Delta AHB\sim\Delta CAB\left(g-g\right).\)
\(\Rightarrow\dfrac{AH}{AC}=\dfrac{AB}{CB}.\\ \Rightarrow AH.CB=AB.AC.\)
b) Xét tứ giác DHEA:
\(\widehat{DAE}=90^o;\widehat{ADH}=90^o;\widehat{AEH}=90^o.\)
\(\Rightarrow\) Tứ giác DHEA là hình chữ nhật.
c) Xét \(\Delta ABC\) vuông tại A:
\(BC^2=AB^2+AC^2\left(Pytago\right).\\ \Rightarrow BC^2=9^2+12^2.\\ \Rightarrow BC=15\left(cm\right).\)
Xét \(\Delta ABC\) vuông tại A; đường cao AH:
\(AH.BC=AB.AC\) (Hệ thức lượng).
\(\Rightarrow AH.15=9.12.\\ \Rightarrow AH=7,2\left(cm\right).\)
Mà \(AH=DE\) (Tứ giác DHEA là hình chữ nhật).
\(\Rightarrow AH=DE=7,2\left(cm\right).\)
\(a)\)
\(A=\left(m-1\right)^3-\left(m-2\right)^3\)
\(=\left(m^3-3m^2+3m-1\right)-\left(m^3-6m^2+12m-8\right)\)
\(=m^3-3m^2+3m-1-m^3+6m^2-12m+8\)
\(=3m^2-9m+7\)
\(B=\left(3m-1\right)\left(3m+1\right)\)
\(=9m^2-1\)
\(\dfrac{1}{9}A=B-7\)
\(\Rightarrow\dfrac{1}{9}\left(3m^2-9m+7\right)=9m^2-1-7\)
\(\Rightarrow3m^2-9m+7=81m^2-72\)
\(\Rightarrow78m^2+9m-79=0\)
\(\Rightarrow m=\dfrac{-9\pm\sqrt{24729}}{156}\)
\(b)\)
\(A< B\)
\(\Rightarrow3m^2-9m+7< 9m^2-1\)
\(\Rightarrow6m^2+9m-8>0\)
\(\Rightarrow\left[{}\begin{matrix}m>\dfrac{-9+\sqrt{273}}{12}\\m< \dfrac{-9-\sqrt{273}}{12}\end{matrix}\right.\)
a: \(M=2\left(x+5\right)^2+5\left(x-2\right)^2-7\left(x+3\right)\left(x-3\right)\)
\(=2\left(x^2+10x+25\right)+5\left(x^2-4x+4\right)-7\left(x^2-9\right)\)
\(=2x^2+20x+50+5x^2-20x+20-7x^2+63\)
\(=113\)
b: \(H=\left(2x-3y\right)^2-\left(3y-2\right)\left(3y+2\right)-\left(1-2x\right)^2+4x\left(3y-1\right)\)
\(=4x^2-12xy+9y^2+12xy-4x-\left(9y^2-4\right)-\left(4x^2-4x+1\right)\)
\(=4x^2+9y^2-4x-9y^2+4-4x^2+4x-1\)
=3
c: \(N=\left(2x+3y\right)^2+\left(3x-2y\right)^2-13\left(x+y\right)\left(x-y\right)-26\left(y+1\right)\left(y-1\right)\)
\(=4x^2+12xy+9y^2+9x^2-12xy+4y^2-13\left(x^2-y^2\right)-26\left(y^2-1\right)\)
\(=13x^2+13y^2-13x^2+13y^2-26y^2+26\)
=26
d: \(K=\left(x^2y-3\right)^2-\left(2x-y\right)^3+xy^2\left(6-x^3\right)+8x^3-6x^2y-y^3\)
\(=x^4y^2-6x^2y+9+6xy^2-x^4y^2+8x^3-6x^2y-y^3-\left(2x-y\right)^3\)
\(=-12x^2y+9-y^3+6xy^2+8x^3-\left(8x^3-12x^2y+6xy^2-y^3\right)\)
\(=\left(8x^3-12x^2y+6xy^2-y^3\right)-\left(8x^3-12x^2y+6xy^2-y^3\right)+9\)
=9
e: \(P=\left(4x+3\right)\left(16x^2-12x+9\right)-\left(-23+64x^3\right)\)
\(=\left(4x\right)^3+3^3+23-64x^3\)
\(=64x^3+27+23-64x^3\)
=50
h: \(Q=\left(x+5y\right)\left(x^2-5xy+25y^2\right)+\left(x-5y\right)\left(x^2+5xy+25y^2\right)-\dfrac{1}{2}\left(4x^3-7\right)\)
\(=x^3+125y^3+x^3-125y^3-2x^3+\dfrac{7}{2}\)
=7/2
cái avt :V
avt ghê v