K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: D đối xứng với H qua AB(gt)

nên AB là đường trung trực của DH

⇔AH=AD(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: E đối xứng với H qua AC(gt)

nên AC là đường trung trực của EH

⇔AE=AH(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra AE=AD

Xét ΔAEH có AH=AE(cmt)

nên ΔAEH cân tại A(Định nghĩa tam giác cân)

mà AC là đường trung trực ứng với cạnh đáy EH

nên AC là tia phân giác của \(\widehat{EAH}\)

Xét ΔADH có AD=AH(cmt)

nên ΔADH cân tại A(Định nghĩa tam giác cân)

mà AB là đường trung trực ứng với cạnh đáy DH

nên AB là tia phân giác của \(\widehat{HAD}\)

Ta có: \(\widehat{EAD}=\widehat{EAH}+\widehat{DAH}\)

\(\Leftrightarrow\widehat{EAD}=2\cdot\left(\widehat{CAH}+\widehat{BAH}\right)\)

\(\Leftrightarrow\widehat{EAD}=2\cdot90^0=180^0\)

Do đó: E,A,D thẳng hàng

mà AE=AD

nên A là trung điểm của DE

12 tháng 12 2015

 a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB=gócBAH; gócHAC= góc CAE và góc BAH+góc HAC=90o 
do đó góc DAB+góc BAH+góc HAC+góc CAE=180o 
=> D, A, E thẳng hàng (4) 
từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=> tam giác DHE vuông tại H. 


c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o
tương tự ta có : góc AEC=90o 
suy ra BD//CE (cùng vuông góc với DE) 
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BAEC là hình thang vuông. 

12 tháng 12 2015

 a) Vì D là điểm đối xứng với H qua AB nên AB là đường trung trực của DH 
=> AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
=> AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác góc DAB= góc BAH; góc HAC=góc CAE và góc BAH+góc HAC=90o 
Do đó góc DAB + góc BAH+ góc HAC + góc CAE=180o
=> D, A, E thẳng hàng (4) 
Từ (3) và (4) suy ra D và E đx với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
=>  tam giác DHE vuông tại H. 

c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra góc ADB=góc AHB=90o 
tương tự ta có góc AEC=90o 
=> BD//CE (cùng vuông góc với DE) 
nên tứ giác BDEC là hình thang có 2 góc vuông kề cạnh bên DE 
=> BDEC là hình thang vuông. 

22 tháng 12 2021

a) Nối D với B lại ta có:

Vì D và H đối xứng với nhau qua AB (gt)

=>AB là đg trung trực của ^DBH

=> AD=AH (1)

Vì E đối xứng với H qua AC (gt)

=>AC là đường trung trực ^HAE

=> AH=AE (2)

Từ (1) và (2) => AD=DE 

=> D là trung điểm của DE (đpcm)

b) Vì AD=AE (cmt)=> HA là đường trung tuyến của tam giác DHE

Mà DE là cạnh lớn nhất (DE>EH,DH)

=> DHE là tam giác vuông tại H ( đg trung tuyến ứng vs cạnh huyền).

c) Vì BD=BH (AB đg trung trực);CE=CH(AC đường trung trực)

Mà BC=BH+HC

=> BC=BD+CE

ABCHDE----

30 tháng 5 2017

A H B C D E 1 2

a) AB là đường trung trực của HD \(\Rightarrow\) AD = AH.

AC là đường trung trực của HE \(\Rightarrow\) AE = AH.

Suy ra AD = AE. (1)

Tam giác AHD cân nên \(\widehat{HAD}=2\widehat{A_1}.\)

Tam giác AHE cân nên \(\widehat{HAE}=2\widehat{A_2}.\)

Suy ra \(\widehat{HAD}+\widehat{HAE}=2\widehat{A_1}+2\widehat{A_2}=2\left(\widehat{A_1}+\widehat{A_2}\right)\)

\(\widehat{HAD}+\widehat{HAE}=2.90^o=180^o.\)

Do đó D, A, E thẳng hàng. (2)

Từ (1) và (2) suy ra A là trung điểm của DE. Vậy D đối xứng với E qua A.

b) Tam giác DHE có HA là đường trung tuyến và HA = \(\dfrac{1}{2}\) DE nên \(\Delta DHE\) vuông tại H.

c) Hãy chứng minh \(\widehat{ADB}=\widehat{AHB}=90^o,\widehat{AEC}=90^o\) để suy ra BDEC là hình thang vuông

d) Hãy chứng minh BD = BH, CE = CH.

18 tháng 11 2017

bạn giải cụ thể giúp mình câu c với b dc ko bn?

8 tháng 8 2019

A B C H D E M N I

a) Tứ giác AEHD có 3 góc vuông nên góc còn lại cũng vuông \(\Rightarrow\) tứ giác AEHD là hình chữ nhật.

b)Ta cần chứng minh NA = AM và A, M, N thẳng hàng

Do tứ giác AEHD là hình chữ nhật nên AD // EH \(\Rightarrow\)AD//NE (1)

Mặt khác DE là đường trung bình nên DE // NM \(\Rightarrow\)DE //NA(2)

Từ (1) và (2) suy ra tứ giác EDAN là hình bình hành \(\Rightarrow\) ED = AN (*)

Tương tự ED = AM (**) .Từ (*) và (**) suy ra AM = AN (***)

Dễ chứng minh \(\Delta\)MAD = \(\Delta\)HAD \(\Rightarrow\)^MAD = ^HAD (4)

Tương tự: ^NAE = ^HAE (5) . Cộng theo vế (4) và (5) suy ra ^MAD + ^NAE = 90o (6)

Từ (6) suy ra  ^MAD + ^NAE + ^EAD = 90o + ^EAD = 180o \(\Rightarrow\)N, A, E thẳng hàng (****)

Từ (***) và (****) suy ra đpcm.

c)\(\Delta\)ABC vuông tại A có AI là trung tuyến nên \(AI=\frac{1}{2}BC=CI\)\(\Rightarrow\)\(\Delta\)ACI cân tại I

\(\Rightarrow\)^IAC = ^ICA (7)

Mặt khác ta dễ dàng chứng minh \(\Delta\)CNA = \(\Delta\)CHA (tự chứng minh đi nhé!)

Suy ra ^NCA = ^HCA \(\Rightarrow\)^NCA = ^ICA (8) (vì H, I cùng thuộc B nên ta có H, I, C thẳng hàng do đó ^HCA = ^ICA)

Từ (7) và (8) ta có ^IAC = ^NCA. Mà hai góc này ở vị trí so le trong nên ta có đpcm.

P/s: Không chắc nha!

14 tháng 12 2016

a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 
suy ra AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
suy ra AH=AE (2) 
Từ (1) và (2) suy ra AD=AE (3) 
Mặt khác ^DAB=^BAH; ^HAC=^CAE và ^BAH+^HAC=90* 
do đó ^DAB+^BAH+ ^HAC+^CAE=180* 
tức là D, A, E thẳng hàng (4) 
từ (3) và (4) suy ra D và E đối xứng với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= 1/2 DE 
nên tam giác DHE vuông tại H. 

c) Tam giác ADB=tam giác AHB (c-c-c) 
suy ra ^ADB=^AHB=90* 
tương tự có ^AEC=90* 
suy ra BD//CE (cùng vuông góc với DE) 
nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE 
nên BAEC là hình thang vuông. 

d) Do AB là đường trung trực của DH nên BD=BH (5) 
Do AC là đường trung trực của EH nên CE=CH (6) 
công vế với vế của (5) và (6) ta có BD+CE=BH+CH 
hay BD+CE=BC
đó nha bn

3 tháng 9 2017

a) Vì D là điềm đối xứng với H qua AB nên AB là đường trung trực của DH 
\(\Rightarrow\) AH=AD (1) 
Vì E đối xứng với H qua AC nên AC là đường trung trực của HE 
\(\Rightarrow\) AH=AE (2) 
Từ (1) và (2) \(\Rightarrow\) AD=AE (3) 
Mặt khác \(\widehat{DAB}=\widehat{BAH}\); \(\widehat{HAC}=\widehat{CAE}\) và \(\widehat{BAH}+\widehat{HAC}=90^0\)
Do đó \(\widehat{DAB}+\widehat{BAH}+\widehat{HAC}+\widehat{CAE}=180^0\)
Tức là D, A, E thẳng hàng (4) 
Từ (3) và (4) \(\Rightarrow\) D và E đối xứng với nhau qua A. 

b) Tam giác DHE có HA là trung tuyến và HA= \(\frac{1}{2}\) DE 
Nên tam giác DHE vuông tại H. 


c) Tam giác ADB = tam giác AHB ( có chung chiều cao ) 
\(\Rightarrow\widehat{ADB}=\widehat{ABH}=90^0\) 
Tương tự có \(\widehat{AEC}=90^0\) 
\(\Rightarrow\) BD//CE (cùng vuông góc với DE) 
Nên tứ giác BAEC là hình thang có 2 góc vuông kề cạnh bên DE 
Nên BAEC là hình thang vuông. 

d) Do AB là đường trung trực của DH nên BD=BH (5) 
Do AC là đường trung trực của EH nên CE=CH (6) 
Cộng vế với vế của (5) và (6) ta có BD+CE=BH+CH 
Hay BD+CE=BC

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Qtheo thứ tự là trung điểm của AD, AF, EF, ED.a) Tứ giác MNPQ là hình gì? Vì sao?7b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M quaAB, E là giao điểm của MH và AB....
Đọc tiếp

Bài 3: Cho tam giác ABC. Gọi D, E, F theo thứ tự là trung điểm của AB, BC, CA. Gọi M, N, P, Q
theo thứ tự là trung điểm của AD, AF, EF, ED.
a) Tứ giác MNPQ là hình gì? Vì sao?

7

b) Tam giác ABC có điều kiện gì thì MNPQ là hình chữ nhật?
c) Tam giác ABC có điều kiện gì thì MNPQ là hình thoi?
Bài 4: Cho tam giác ABC vuông tại A, đường trung tuyến AM. Gọi H là điểm đối xứng với M qua
AB, E là giao điểm của MH và AB. Gọi K là điểm đối xứng với M qua AC, F là giao điểm của MK
và AC.
a) Xác định dạng của các tứ giác AEMF, AMBH, AMCK.
b) Chứng minh rằng H đối xứng với K qua A.
c) Tam giác vuông ABC có thêm điều kiện gì thì AEMF là hình vuông?
Bài 5: Cho tam giác ABC cân tại A, đường cao AD. Gọi E là điểm đối xứng với D qua trung điểm
M của AC.
a) Tứ giác ADCE là hình gì? Vì sao?
b) Tứ giác ABDM là hình gì? Vì sao?
c) Tam giác ABC có thêm điều kiện gì thì ADCE là hình vuông?
d) Tam giác ABC có thêm điều kiện gì thì ABDM là hình thang cân?

1

https://lazi.vn/edu/exercise/cho-tam-giac-abc-goi-d-e-f-theo-thu-tu-la-trung-diem-cua-ab-bc-ca-goi-m-n-p-q-theo-thu-tu-la-trung-diem

Bạn xem tại link này nhé

Học tốt!!!!!!