Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo Pytago tam giác ABC vuông tại A
BC^2 = AB^2 + AC^2
25 = 9 + 16 * luôn đúng *
OM\(\perp\)AB
=>\(\widehat{MOA}=\widehat{MOB}=90^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\widehat{AOE}< \widehat{AOM}\)
nên tia OE nằm giữa hai tia OA và OM
=>\(\widehat{AOE}+\widehat{MOE}=\widehat{AOM}=90^0\)
Trên cùng một nửa mặt phẳng bờ chứa tia OB, ta có: \(\widehat{BOF}< \widehat{BOM}\)
nên tia OF nằm giữa hai tia OB và OM
=>\(\widehat{BOF}+\widehat{MOF}=\widehat{BOM}=90^0\)
=>\(\widehat{AOE}+\widehat{MOE}=\widehat{BOF}+\widehat{MOF}\)
mà \(\widehat{AOE}=\widehat{BOF}\)
nên \(\widehat{MOE}=\widehat{MOF}\)
=>OM là phân giác của \(\widehat{EOF}\)
Ta có \(\left|7x+5\right|+4\ge4;2\left|7x+5\right|+11\ge11\)
Do đó \(A=\dfrac{2\left|7x+5\right|+11}{\left|7x+5\right|+4}\le\dfrac{11}{4}\)
Vậy GTLN A là \(\dfrac{11}{4}\Leftrightarrow\left|7x+5\right|=0\Leftrightarrow x=-\dfrac{5}{7}\)
`@` `\text {Ans}`
`\downarrow`
\(\left(\dfrac{1}{5}\right)^{2x-1}=\dfrac{1}{125}\)
`=>`\(\left(\dfrac{1}{5}\right)^{2x-1}=\left(\dfrac{1}{5}\right)^3\)
`=>`\(2x-1=3\)
`=> 2x = 3 + 1`
`=> 2x = 4`
`=> x = 4 \div 2`
`=> x = 2`
Vậy, `x = 2.`
`@` `\text {Kaizuu lv uuu}`
ĐIỀU KIỆN : \(x\ge0\)
\(\Rightarrow\hept{\begin{cases}x-2=x\\x-2=-x\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}0=2\left(vl\right)\\2x=2\end{cases}\Rightarrow x=1\left(tm\right)}\)
Vậy \(x=1\)
Áp dụng t/c dtsbn:
\(\dfrac{2021a+b+c}{a}=\dfrac{a+2021b+c}{b}=\dfrac{a+b+2021c}{c}=\dfrac{2023\left(a+b+c\right)}{a+b+c}=2023\)
\(\Rightarrow\left\{{}\begin{matrix}2023a=2021a+b+c\\2023b=a+2021b+c\\2023c=a+b+2021c\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}2a=b+c\\2b=a+c\\2c=a+b\end{matrix}\right.\)
\(S=\dfrac{a+b}{c}+\dfrac{b+c}{a}+\dfrac{c+a}{b}=\dfrac{2c}{c}+\dfrac{2a}{a}+\dfrac{2b}{b}=2+2+2=6\)