Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
e:
\(E=\left(\dfrac{\sqrt{15}-\sqrt{20}}{2-\sqrt{3}}+\dfrac{\sqrt{21}-\sqrt{7}}{1-\sqrt{3}}\right):\dfrac{1}{\sqrt{7}-\sqrt{5}}\)
\(=\left(-\dfrac{\sqrt{5}\left(2-\sqrt{3}\right)}{2-\sqrt{3}}-\dfrac{\sqrt{7}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}\right)\cdot\dfrac{\sqrt{7}-\sqrt{5}}{1}\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=-2
f: \(F=\sqrt{3}+1+2-\sqrt{3}=3\)
3b.
\(\Delta=m^2+4\left(m+1\right)=\left(m+2\right)^2\)
Pt có 2 nghiệm pb khi \(\left(m+2\right)^2>0\Rightarrow m\ne-2\)
Khi đó theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-\left(m+1\right)\end{matrix}\right.\)
\(x_1+x_2-2x_1x_2=8\)
\(\Leftrightarrow-m+2\left(m+1\right)=8\)
\(\Rightarrow m=6\) (thỏa mãn)
6.
\(M=x-\sqrt{x}+1=\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(M_{min}=\dfrac{3}{4}\) khi \(\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\)
\(11,\\ a,=4\cdot5+14:7=20+2=22\\ b,=3\sqrt{2}-12\sqrt{2}+5\sqrt{2}=-4\sqrt{2}\\ c,=\dfrac{3-\sqrt{2}+3+\sqrt{2}}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}=\dfrac{6}{7}\\ 12,\\ a,P=\dfrac{\sqrt{x}+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}}\\ P=\dfrac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}=\dfrac{2}{\sqrt{x}+3}\\ b,P=\dfrac{1}{2}\Leftrightarrow\sqrt{x}+3=4\Leftrightarrow x=1\left(tm\right)\)
a: \(=4\cdot5+14:7=20+2=22\)
b: \(=3\sqrt{2}-8\sqrt{2}+5\sqrt{2}=0\)
\(e,3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=8\left(x\ge0\right)\\ \Leftrightarrow\sqrt{x}\left(3\sqrt{2}-5\sqrt{8}+7\sqrt{18}\right)=8\\ \Leftrightarrow\sqrt{x}\left(3\sqrt{2}-10\sqrt{2}+21\sqrt{2}\right)=8\\ \Leftrightarrow14\sqrt{2x}=8\Leftrightarrow\sqrt{2x}=\dfrac{4}{7}\Leftrightarrow2x=\dfrac{16}{49}\Leftrightarrow x=\dfrac{8}{49}\left(tm\right)\)
\(f,\sqrt{4x+20}-\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\left(x\ge-5\right)\\ \Leftrightarrow2\sqrt{x+5}-\sqrt{x+5}-\dfrac{1}{3}\cdot3\sqrt{x+5}=4\\ \Leftrightarrow0\sqrt{x+5}=4\\ \Leftrightarrow\sqrt{x+5}=0\Leftrightarrow x+5=0\Leftrightarrow x=-5\left(tm\right)\)
e) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=8\left(đk:x\ge0\right)\)
\(\Leftrightarrow3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=8\)
\(\Leftrightarrow14\sqrt{2x}=8\Leftrightarrow\sqrt{2x}=\dfrac{8}{14}\Leftrightarrow2x=\dfrac{16}{49}\Leftrightarrow x=\dfrac{8}{49}\left(tm\right)\)
f) \(\sqrt{4x+20}-\sqrt{x+5}-\dfrac{1}{3}\sqrt{9x+45}=4\)
\(\Leftrightarrow2\sqrt{x+5}-\sqrt{x+5}-\sqrt{x+5}=4\)
\(\Leftrightarrow0=4\left(VLý\right)\)
Vậy \(x\in\left\{\varnothing\right\}\)
\(21,\\ e,PT\Leftrightarrow\left|2x-5\right|=5-2x\Leftrightarrow\left[{}\begin{matrix}2x-5=5-2x\left(x\ge\dfrac{5}{2}\right)\\5-2x=5-2x\left(x< \dfrac{5}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\left(tm\right)\\0x=0\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x\in R\\ f,\Leftrightarrow\left|x-\dfrac{1}{4}\right|=\dfrac{1}{4}-x\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{4}=\dfrac{1}{4}-x\left(x\ge\dfrac{1}{4}\right)\\\dfrac{1}{4}-x=\dfrac{1}{4}-x\left(x< \dfrac{1}{4}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\left(tm\right)\\0x=0\left(tm\right)\end{matrix}\right.\\ \Leftrightarrow x\in R\)