
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Đặt A'B'=a
ΔA'B'C' vuông tại B'
=>\(\left(A^{\prime}B^{\prime}\right)^2+\left(B^{\prime}C^{\prime}\right)^2=\left(A^{\prime}C^{\prime}\right)^2\)
=>\(\left(A^{\prime}C^{\prime}\right)^2=a^2+a^2=2a^2\)
=>\(A^{\prime}C^{\prime}=a\sqrt2\) (1)
Vì ABCD.A'B'C'D' là hình lập phương
nên A'A//C'C và A'A=C'C
=>A'ACC' là hình bình hành
=>A'C'//AC
=>\(\hat{AC;A^{\prime}D}=\hat{A^{\prime}C^{\prime};A^{\prime}D}=\hat{DA^{\prime}C^{\prime}}\)
A'B'C'D' là hình vuông
=>A'D'=D'C'=C'B'=A'B'=a
Vì ABCD.A'B'C'D' là hình lập phương
nên A'B'BA là hình vuông
=>A'A=A'B'=a
Vì ABCD.A'B'C'D' là hình lập phương
nên D'D=A'A=a
ΔA'D'D vuông tại D'
=>\(\left(D^{\prime}A^{\prime}\right)^2+\left(D^{\prime}D\right)^2=\left(A^{\prime}D\right)^2\)
=>\(\left(A^{\prime}D\right)^2=a^2+a^2=2a^2\)
=>\(A^{\prime}D=a\sqrt2\)
D'C'CD là hình vuông
=>\(\left(DC^{\prime}\right)^2=\left(D^{\prime}D\right)^2+\left(D^{\prime}C^{\prime}\right)^2=a^2+a^2=2a^2\)
=>\(DC^{\prime}=a\sqrt2\)
=>DC'=DA'=A'C'
=>ΔDA'C' đều
=>\(\hat{DA^{\prime}C^{\prime}}=60^0\)
=>\(\hat{AC;A^{\prime}D}=60^0\)
=>Chọn C


Bài 8: \(\frac{25\pi}{4}=\frac{24\pi+\pi}{4}=6\pi+\frac{\pi}{4}=3\cdot2\pi+\frac{\pi}{4}\)
Bài 9:
\(-1485^0=-1440^0-45^0=-4\cdot360^0-45^0\)
Biểu diễn trên đường tròn lượng giác:
Bài 10:
Bài 11:

Câu 1: \(\frac{\pi}{2}<\alpha,\beta<\pi\)
=>\(\sin\alpha>0;\sin\beta>0;cos\alpha<0;cos\beta<0\)
\(\sin^2\alpha+cos^2\alpha=1\)
=>\(cos^2\alpha=1-\sin^2\alpha=1-\left(\frac13\right)^2=\frac89\)
mà \(cos\alpha<0\)
nên \(cos\alpha=-\frac{2\sqrt2}{3}\)
Ta có: \(\sin^2\beta+cos^2\beta=1\)
=>\(\sin^2\beta=1-\left(-\frac23\right)^2=1-\frac49=\frac59\)
mà \(\sin\beta>0\)
nên \(\sin\beta=\frac{\sqrt5}{3}\)
\(\sin\left(\alpha+\beta\right)=\sin\alpha\cdot cos\beta+cos\alpha\cdot\sin\beta\)
\(=\frac13\cdot\frac{-2}{3}+\frac{-2\sqrt2}{3}\cdot\frac{\sqrt5}{3}=\frac{-\sqrt2-2\sqrt{10}}{9}\)
Câu 2:
\(P=cos\left(a+b\right)\cdot cos\left(a-b\right)\)
\(=\frac12\cdot\left\lbrack cos\left(a+b+a-b\right)+cos\left(a+b-a+b\right)\right\rbrack=\frac12\cdot\left\lbrack cos2a+cos2b\right\rbrack\)
\(=\frac12\cdot\left\lbrack2\cdot cos^2a-1+2\cdot cos^2b-1\right\rbrack=cos^2a+cos^2b-1\)
\(=\left(\frac13\right)^2+\left(\frac14\right)^2-1=\frac19+\frac{1}{16}-1=\frac{25}{144}-1=-\frac{119}{144}\)

Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:
p=O'A'OA=22=1�=�'�'��=22=1;
q=O'B'OB=13�=�'�'��=13;
r=O'C'OC=46=23�=�'�'��=46=23.

a)
Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng lớn (dần tới \( + \infty \)).
b)
Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng bé (dần tới \( - \infty \)).
d) \(y=4sinx-2cos2x-1\)
\(=4sinx-2\left(1-2sin^2x\right)-1\)
\(=4sin^2x+4sinx-3\)
Đặt \(t=sinx,t\in\left[-1;1\right]\)
\(y=f\left(t\right)=4t^2+4t-3\) \(\Leftrightarrow f'\left(t\right)=8t+4\)
\(f'\left(t\right)=0\Leftrightarrow t=-\dfrac{1}{2}\)
Vẽ BBT với \(t\in\left[-1;1\right]\) ta được
\(minf\left(t\right)=miny=-4\Leftrightarrow t=-\dfrac{1}{2}\)\(\Leftrightarrow sinx=-\dfrac{1}{2}\)\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{6}+k2\pi\\x=\dfrac{7\pi}{6}+k2\pi\end{matrix}\right.\) ( k thuộc Z)
\(maxf\left(t\right)=miny=5\Leftrightarrow t=1\)\(\Leftrightarrow sinx=1\) \(\Leftrightarrow x=\dfrac{\pi}{2}+k2\pi\) ( k thuộc Z)
Vậy...
e) \(y=3sin2x+8cos^2x-1\)
\(=3sin2x+4\left(2cos^2x-1\right)+3\)
\(=3sin2x+4cos2x+3\)
\(=5\left(\dfrac{3}{5}sin2x+\dfrac{4}{5}cos2x\right)+3\)
Đặt \(cosu=\dfrac{3}{5}\Leftrightarrow sinu=\dfrac{4}{5}\)
\(y=5\left(sin2x.cosu+cos2x.sinu\right)+3=5.sin\left(2x+u\right)+3\)
Có \(-1\le sin\left(2x+u\right)\le1\) \(\Leftrightarrow-2\le y\le8\)
\(maxy=8\Leftrightarrow sin\left(2x+u\right)=1\) \(\Leftrightarrow2x+u=\dfrac{\pi}{2}+k2\pi\) \(\Leftrightarrow x=-\dfrac{u}{2}+\dfrac{\pi}{4}+k\pi\)\(\Leftrightarrow x=-\dfrac{1}{2}.arccos\dfrac{3}{5}+\dfrac{\pi}{4}+k\pi\) ( k thuộc Z)
\(miny=-2\Leftrightarrow sin\left(2x+u\right)=-1\)\(\Leftrightarrow x=-\dfrac{1}{2}.\dfrac{arccos3}{5}-\dfrac{\pi}{4}+k\pi\) ( k thuộc Z)
Vậy...