Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) -△BKM∼△BHA (g-g) \(\Rightarrow\dfrac{BK}{BH}=\dfrac{BM}{BA}\)
\(\Rightarrow\)△BKH∼△BMA (c-g-c) \(\Rightarrow\dfrac{S_{BKH}}{S_{BMA}}=\left(\dfrac{BH}{BA}\right)^2=\left(\dfrac{\dfrac{2}{3}AB}{AB}\right)^2=\left(\dfrac{2}{3}\right)^2=\dfrac{4}{9}\)
\(\Rightarrow S_{BMA}=\dfrac{9}{4}.S_{BKH}=\dfrac{9}{4}.54=121,5\left(cm^2\right)\)
c) \(=\left(4x-3\right)^2-\left(9x^2-4\right)\)
\(=16x^2-24x+9-9x^2+4=7x^2-24x+13\)
d) \(=\left(x^2-3x+2\right)\left(x+3\right)-\left(x^3-5x^2\right)\)
\(=x^3+3x^2-3x^2-9x+2x+6-x^3+5x^2\)
\(=5x^2-7x+6\)
c. (4x - 3)(4x - 3) - (3x + 2)(3x - 2)
= (4x - 3)2 - (9x2 - 4)
= 16x2 - 24x + 9 - 9x2 + 4
= 16x2 - 9x2 - 24x + 9 + 4
= 7x2 - 24x + 13
d. (x - 2)(x - 1)(x + 3) - x2(x - 5)
= (x2 - 1 - 2x + 2)(x + 3) - x2(x - 5)
= x3 + 3x2 - x - 3 - 2x2 - 6x + 2x + 6 - x3 + 5
= x3 - x3 + 3x2 - 2x2 - x - 6x + 2x + 6 + 5 - 3
= x2 - 5x + 8
c: ΔABD đồng dạng với ΔACE
=>BD/CE=AB/AC
=>AB/AC=BM/CN
Xét ΔABM và ΔACN có
AB/AC=BM/CN
góc ABM=góc ACN
=>ΔABM đồng dạng với ΔACN
=>góc BAM=góc CAN
góc BAM+góc MAK=góc BAK
góc CAN+góc NAK=góc CAK
mà góc BAM=góc CAN và góc MAK=góc NAK
nên góc BAK=góc CAK
=>AK là phân giác của góc BAC
=>KB/AB=KC/AC
=>KB*AC=KC*AB
c: \(3x\left(x-7\right)-2\left(x-7\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=\dfrac{2}{3}\end{matrix}\right.\)
d: \(7x^2-28=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
Bài 2:
a: \(2\left(x-4\right)-x+3=0\)
\(\Leftrightarrow2x-8-x+3=0\)
hay x=5
b: \(x^2-25-\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x-6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=6\end{matrix}\right.\)
e: \(E=\dfrac{x^2-9-x^2+4-x^2+9}{\left(x+3\right)\left(x-2\right)}\)
\(=\dfrac{x+2}{x+3}\)
a: \(A=\dfrac{4x^2+x^2-2x+1+x^2+2x+1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{6x^2+2}{\left(x-1\right)\left(x+1\right)}\)
\(a^3+3a^2b+3ab^2+b^3-2022=\left(a+b\right)^3-2022=\left(2021-2020\right)^3-2022=1-2022=-2021\)
Hai tam giác vuông CAB và CFE đồng dạng (chung góc C)
\(\Rightarrow\dfrac{CF}{CA}=\dfrac{EF}{AB}=\dfrac{AD}{AB}=\dfrac{AD}{3}\)
\(\Rightarrow\dfrac{AC-AF}{AC}=\dfrac{AD}{3}\Leftrightarrow\dfrac{AC-2}{AC}=\dfrac{AD}{3}\Rightarrow AD=3\left(\dfrac{AC-2}{AC}\right)\)
\(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{3}{2}AC\)
\(S_{ADEF}=AD.AF=2AD=6\left(\dfrac{AC-2}{AC}\right)\)
Theo đề bài: \(S_{ADEF}=\dfrac{1}{2}S_{ABC}\Rightarrow6\left(\dfrac{AC-2}{AC}\right)=\dfrac{1}{2}.\dfrac{3}{2}AC\)
\(\Leftrightarrow8\left(AC-2\right)=AC^2\Leftrightarrow AC^2-8AC+16=0\)
\(\Leftrightarrow\left(AC-4\right)^2=0\Leftrightarrow AC=4\)
Vậy \(S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{1}{2}.3.4=6\left(cm^2\right)\) \(\Rightarrow S_{ADEF}=3\)
Đâu ạ
câu nào ạ?