Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4: Ta có: \(x^2+10x+25=0\)
\(\Leftrightarrow x+5=0\)
hay x=-5
5: Ta có: \(x^2-x+\dfrac{1}{4}=0\)
\(\Leftrightarrow x-\dfrac{1}{2}=0\)
hay \(x=\dfrac{1}{2}\)
6: Ta có: \(x^2-10x+25=0\)
nên x-5=0
hay x=5
\(\widehat{x'MC}=\widehat{xMN}\)(hai góc đối đỉnh
mà \(\widehat{xMN}=60^0\)
nên \(\widehat{x'MC}=60^0\)
Mz là phân giác của \(\widehat{x'MC}\)
=>\(\widehat{x'Mz}=\widehat{CMz}=\dfrac{60^0}{2}=30^0\)
Mz//Nt
=>\(\widehat{zMC}=\widehat{tNM}\)(hai góc đồng vị)
=>\(\widehat{tNM}=30^0\)
Nt là phân giác của góc y'NM
=>\(\widehat{y'NM}=2\cdot\widehat{tMN}=60^0\)
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{6}=\dfrac{b}{4}=\dfrac{c}{3}=\dfrac{a-b}{6-4}=\dfrac{30}{2}=15\)
Do đó: a=90; b=60; c=45
\(\frac{3}{13}.\frac{5}{9}+\frac{1}{6}:\frac{13}{3}+1\)
\(=\frac{3}{13}.\frac{5}{9}+\frac{1}{6}.\frac{3}{13}+1\)
\(=\frac{3}{13}.\left(\frac{5}{9}+\frac{1}{6}\right)+1\)
\(=\frac{3}{13}.\left(\frac{30+9}{54}\right)+1\)
\(=\frac{3}{13}.\frac{39}{54}+1\)
\(=\frac{1}{6}+1\)
\(=\frac{7}{6}\)
\(\frac{5}{6}-\frac{7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\left(\frac{2}{13}-\frac{11}{13}\right)+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\frac{-9}{13}-\frac{2}{9}\)
\(=\frac{5}{6}-\frac{-7}{13}-\frac{2}{9}\)
\(\frac{5}{6}-\frac{7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\left(\frac{2}{13}-\frac{11}{13}\right)+\frac{-2}{9}\)
\(=\frac{5}{6}-\frac{7}{9}.\frac{-9}{13}-\frac{2}{9}\)
\(=\frac{5}{6}-\frac{-7}{13}-\frac{2}{9}\)
\(=\frac{5}{6}+\frac{7}{13}-\frac{2}{9}\)
\(=\frac{195+126-52}{234}\)
\(=\frac{269}{234}\)
\(\frac{3}{13}.\frac{5}{9}+\frac{1}{6}:\frac{13}{3}+1\)
\(=\frac{3}{13}.\frac{5}{9}+\frac{1}{6}.\frac{3}{13}+1\)
\(=\frac{3}{13}.\left(\frac{5}{9}+\frac{1}{6}\right)+1\)
\(=\frac{3}{13}.\left(\frac{30+9}{54}\right)+1\)
\(=\frac{3}{13}.\frac{39}{54}+1\)
\(=\frac{1}{6}+1=\frac{1}{6}+\frac{6}{6}\)
\(=\frac{7}{6}\)
\(\frac{-7}{9}.\frac{2}{13}-\frac{7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{-7}{9}.\frac{2}{13}+\frac{-7}{9}.\frac{11}{13}+\frac{-2}{9}\)
\(=\frac{-7}{9}.\left(\frac{2}{13}+\frac{11}{13}\right)+\frac{-2}{9}\)
\(=\frac{-7}{9}.1+\frac{-2}{9}\)
\(=\frac{-7}{9}+\frac{-2}{9}\)
\(=\frac{-9}{9}=-1\)
\(\frac{2}{13}.\frac{2}{7}.5\)
\(=\frac{2.2.5}{13.7}\)
\(=\frac{20}{91}\)
\(\frac{1}{5}.\frac{11}{12}.\frac{21}{6}\)
\(=\frac{11.21}{5.12.6}\)
\(=\frac{231}{360}=\frac{77}{120}\)
Bài 6:
a:
Xét ΔBAD có BA=BD
nên ΔBAD cân tại B
Ta có: \(\widehat{CAD}+\widehat{BAD}=90^0\)
\(\widehat{HAD}+\widehat{BDA}=90^0\)
mà \(\widehat{BAD}=\widehat{BDA}\)
nên \(\widehat{CAD}=\widehat{HAD}\)
hay AD là tia phân giác của \(\widehat{HAC}\)
b: Xét ΔAKD vuông tại K và ΔAHD vuông tại H có
AD chung
\(\widehat{KAD}=\widehat{HAD}\)
Do đó: ΔAKD=ΔAHD
Suy ra: AK=AH
1) = \(\frac{3}{5}\)
2) =\(\frac{6}{7}\)
3)\(\frac{9}{13}\)
4)\(\frac{4}{13}\)
Bài 6:
Xét ΔABH vuông tại H có
\(AH^2+HB^2=AB^2\)
nên \(AB^2-HB^2=AH^2\left(1\right)\)
Xét ΔACH vuông tại H có
\(AH^2+HC^2=AC^2\)
hay \(AC^2-HC^2=AH^2\left(2\right)\)
Từ (1) và (2) suy ra \(AB^2-HB^2=AC^2-HC^2\)
hay \(AB^2+HC^2=AC^2+HB^2\)
bn ko làm câu 5 à?