Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ Chu vi hình chữ nhật:
\(\left(\dfrac{1}{4}+\dfrac{3}{10}\right)\cdot2=\dfrac{11}{10}\) (chưa biết đơn vị)
Diện tích hình chữ nhật:
\(\dfrac{1}{4}\cdot\dfrac{3}{10}=\dfrac{11}{20}\) (chưa biết đơn vị)
Chứng Minh:C=\(3^0+3^2+3^4+...+3^{2002}⋮7\)
Nhân C với \(3^2\)ta có:
\(9S=3^2+3^4+3^6+...+3^{2004}\)
\(\Rightarrow9S-S=\left(3^2+3^4+...+3^{2004}\right)-\left(3^0+3^2+3^4+...+3^{2002}\right)\)
\(\Rightarrow8S=3^{2004}-1\)
\(\Rightarrow S=\dfrac{3^{2004}-1}{8}\)
Chứng minh:
Ta có:\(3^{2004}-1=\left(3^6\right)^{334-1}=\left(3^6-1\right).a=7.104.a\)
\(\)UCLN(7;8)=1
\(\Rightarrow S⋮7\)
Sửa lại 1 chút!
Chứng minh: C= \(3^0+3^2+3^4+3^6+...+3^{2002}\) chia hết cho 7
Câu 14)
\(a,\\ =-\dfrac{3}{8}+\dfrac{8}{17}+\dfrac{-5}{8}-\dfrac{3}{5}+\dfrac{9}{17}\\ =\left(\dfrac{-3}{8}+\dfrac{-5}{8}\right)+\left(\dfrac{8}{17}+\dfrac{9}{17}\right)-\dfrac{3}{5}\\ =\left(-1\right)+1-\dfrac{3}{5}=0-\dfrac{3}{5}=\dfrac{-3}{5}\\ b,\\ =\dfrac{7}{15}.\dfrac{-15}{14}+\left(\dfrac{27}{16}-\dfrac{1}{8}\right):\dfrac{5}{8}\)
\(=\dfrac{-1}{2}+\dfrac{25}{16}.\dfrac{8}{5}=\dfrac{-1}{2}+\dfrac{5}{2}=2\\ c,\\ =\dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+.....+\dfrac{2}{99}-\dfrac{2}{100}\\ =1-\dfrac{1}{50}=\dfrac{49}{50}\)
Câu 15
\(a,2x+\dfrac{-1}{4}=\dfrac{3}{2}\\ 2x=\dfrac{3}{2}-\dfrac{-1}{4}=\dfrac{7}{4}\\ x=\dfrac{7}{4}:2=\dfrac{7}{8}\\ b,\dfrac{15}{x}=\dfrac{-3}{4}\\ x=\dfrac{15.4}{-3}=-20\)
Để phân số \(\dfrac{n+3}{2n-2}\) có giá trị là số nguyên thì n + 3 \(⋮\) 2n - 2
Ta có : n + 3 \(⋮\) 2n - 2 \(\Rightarrow\) 2(n + 3) \(⋮\) 2n - 2 \(\Rightarrow\) 2n + 6 \(⋮\) 2n - 2
mà 2n - 2 \(⋮\) 2n - 2
\(\Rightarrow\) 2n + 6 - (2n - 2) \(⋮\) 2n - 2
\(\Rightarrow\) 2n + 6 - 2n + 2 \(⋮\) 2n - 2
\(\Rightarrow\) 8 \(⋮\) 2n - 2
\(\Rightarrow\) 2n - 2 \(\in\) Ư(8)
\(\Rightarrow\) 2n - 2 \(\in\) { \(\pm1;\pm2;\pm4;\pm8\)}
Ta có bảng sau :
2n - 2 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
2n | 3 | 1 | 4 | 0 | 6 | -2 | 10 | -6 |
n | 3/2 (loại) | 1/2(loại) | 2 | 0 | 3 | -1 | 5 | -3 |
Vậy để phân số \(\dfrac{n+3}{2n-2}\) có giá trị là số nguyên thì n \(\in\) {-1;0;2;\(\pm3\);5}
Để ps n+3/2n-2
n+3 :2n-2
2(n+3):2n-2
2n+6:2n-2
2n-2+8:2n-2
Mà 2n-2 chia hết cho 2n-2
8:2n-2
2n-2 thuộc Ư(8)
2n-2(-8;-4;-2;-1;1;2;4;8)
2n(-6;-2;0;1;3;4;6;10)
n(-3;-1;0;1/2;3/2;2;3;5)
Mà n thuộc Z
Suy ra n(-3;-1;0;2;3;5)
Vậy n(-3;-1;0;2;3;5) thì n+3/2n-2 có giá trị nguyên
Giải:
Tên tam giác |
Tên 3 đỉnh |
Tên 3 góc |
Tên 3 cạnh |
ABI |
A,B,I |
|
AB, BI, IA |
AIC |
A,I,C |
|
AI, IC, CA |
ABC |
A,B,C |
|
AB, BC, CA |
a)\(123-5:\left(x+4\right)=38\)
\(5:\left(x+4\right)=123-38\)
\(5:\left(x+4\right)=85\)
\(x+4=5:85\)
\(x=\dfrac{1}{17}-4\)
\(x=-\dfrac{67}{17}\)
b)\(70-5.\left(x-3\right)=45\)
\(5.\left(x-3\right)=70-45\)
\(5.\left(x-3\right)=35\)
\(x-3=35:5\)
\(x-3=7\)
\(x=7+3\)
\(x=10\)
\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+....+\dfrac{3}{59.61}\)
\(S=\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+......+\dfrac{1}{59}-\dfrac{1}{61}\)
\(S=\left(\dfrac{1}{5}-\dfrac{1}{7}\right)+\left(\dfrac{1}{7}-\dfrac{1}{9}\right)+...+\left(\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(S=\dfrac{1}{5}-\dfrac{1}{61}\)
\(S=\dfrac{56}{305}\)
Vậy S = \(\dfrac{56}{305}\)
\(S=\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)
\(S=\dfrac{3}{2}\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)
\(S=\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)=\dfrac{3}{2}.\dfrac{56}{305}=\dfrac{84}{305}\)
3,
A=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A=1-1/100(1)
B=1/2^2+1/3^2+..+1/100^2
B<1/1.2 +1/2.3+...+1/99.100
B<1-1/2+1/2-1/3+...+1/99-1/100
B<1-1/100(2)
từ (1) (2) => A>B