K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2019

Ta có:

Đồ thị hàm số y=ax+b song song với y=-2x+3

=> a=2; b\(\ne\)3  (1)

Mà đồ thị hàm số y=ax+b đi qua điểm M(2;5)

=> thay x=2; y=5 vào y=ax+b ta có:

5=2a+b (2)

Từ (1),(2) => a=2; b=1

12 tháng 3 2019

ukm bn

bài này dễ

mik đăng cho có thôi 

bn 3 k

3 tháng 5 2023

\(\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\)

\(\Leftrightarrow\dfrac{1105-1100}{x+5}=2\)

\(\Leftrightarrow\dfrac{5}{x-5}=2\)

\(\Leftrightarrow5=2\left(x-5\right)\)

\(\Leftrightarrow5=2x-10\)

\(\Leftrightarrow2x=15\)

\(\Leftrightarrow x=\dfrac{15}{2}=7,5\)

3 tháng 5 2023

\(\dfrac{1100}{x}-\dfrac{1100}{x+5}=2\left(ĐK:x\ne0;x\ne-5\right)\\ \Leftrightarrow\dfrac{1100\left(x+5\right)-1100x}{x\left(x+5\right)}=\dfrac{2x\left(x+5\right)}{x\left(x+5\right)}\\ \Leftrightarrow2x^2+10x-5500=0\\ \Leftrightarrow2x^2-100x+110x-5500=0\\ \Leftrightarrow2x.\left(x-50\right)+110.\left(x-50\right)=0\\ \Leftrightarrow\left(2x+110\right).\left(x-50\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+110=0\\x-50=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-55\left(TM\right)\\x=50\left(TM\right)\end{matrix}\right.\)

Vậy: S={-55;50}

NV
6 tháng 10 2021

Độ dài quãng đường BD:

\(BD=\dfrac{CD}{sin\widehat{CBD}}=\dfrac{10}{sin3^050'}\approx150\left(m\right)=0,15\left(km\right)\)

Thời gian đi hết đoạn AB:

\(t_1=\dfrac{0,4}{4}=0,1\left(h\right)\)

Thời gian đi hết đoạn BD:

\(t_2=\dfrac{0,15}{3}=0,05\left(h\right)\)

Tổng thời gian:

\(t=t_1+t_2=0,15\left(h\right)=9\left(ph\right)\)

11 tháng 4 2022

giúp mik với

e: Ta có: \(E=\sqrt{19+8\sqrt{3}}-\sqrt{28-6\sqrt{3}}+\sqrt{12}\)

\(=4+\sqrt{3}-3\sqrt{3}+1+2\sqrt{3}\)

=5

17 tháng 8 2021

còn các câu khác nữa ạ!

2:

a: Xét tứ giác DIHK có 

\(\widehat{DIH}=\widehat{DKH}=\widehat{IDK}=90^0\)

Do đó: DIHK là hình chữ nhật

Suy ra: DH=KI(1)

Xét ΔDEF vuông tại D có DH là đường cao ứng với cạnh huyền EF

nên \(DH^2=HE\cdot HF\left(2\right)\)

Từ (1) và (2) suy ra \(IK^2=HE\cdot HF\)

9 tháng 6 2021

\(\left\{{}\begin{matrix}2\left(x+y\right)+\sqrt{x+1}=4\\\left(x+y\right)-3\sqrt{x+1}=-5\end{matrix}\right.\left(x\ge-1\right)\)

Đặt \(\left\{{}\begin{matrix}a=x+y\\b=\sqrt{x+1}\end{matrix}\right.\left(b\ge0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}2a+b=4\\a-3b=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}2a+b=4\left(1\right)\\2a-6b=-10\left(2\right)\end{matrix}\right.\)

Lấy \(\left(1\right)-\left(2\right)\Rightarrow7b=14\Rightarrow b=2\Rightarrow2a=4-2=2\Rightarrow a=1\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=1\\\sqrt{x+1}=2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\)

20 tháng 6 2021

\(x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\left(đk:x\ge2;y\ge3;z\ge5\right)\)

\(< =>\left(x-2\right)-2\sqrt{x-2}+1+\left(y-3\right)-4\sqrt{y-3}+4+\left(z-5\right)-6\sqrt{z-5}+9=0\)

\(< =>\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Do \(\left(\sqrt{x-2}-1\right)^2\ge0;\left(\sqrt{y-3}-2\right)^2\ge0;\left(\sqrt{z-5}-3\right)^2\ge0\)

Cộng theo vế ta được \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2\ge0\)

Mà \(\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\)

Dấu "=" xảy ra khi và chỉ khi x = 3 ; y = 7 ; z = 14 ( tmđk )

Vậy ...

20 tháng 6 2021

thank you