Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét ΔABE vuông tại A có AH là đường cao ứng với cạnh huyền BE
nên \(BH\cdot BE=AB^2\left(1\right)\)
Xét ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC
nên \(AH\cdot AC=AB^2\left(2\right)\)
Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)
2:
a: =>x^2(5x^2+2)+2=0
x^2>=0
5x^2+2>=2
=>x^2(5x^2+2)>=0 với mọi x
=>x^2(5x^2+2)+2>=2>0 với mọi x
=>PTVN
b: x^4-12x^2+24=0
=>x^4-12x^2+36-12=0
=>(x^2-6)^2-12=0
=>(x^2-6-2căn 3)(x^2-6+2căn 3)=0
=>x^2=6+2căn 3 hoặc x^2=6-2căn 3
=>\(x=\pm\sqrt{6+2\sqrt{3}};x=\pm\sqrt{6-2\sqrt{3}}\)
1: Thay x=1/4 vào A, ta được:
\(A=\left(\dfrac{1}{2}+2\right):\dfrac{1}{2}=\dfrac{5}{2}\cdot\dfrac{2}{1}=5\)
2: \(B=\dfrac{x+\sqrt{x}+2+\sqrt{x}-2}{x-4}=\dfrac{x+2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}}{\sqrt{x}-2}\)
anou nhg mik cần phần c/m của phần 3 thôi ạ mấy phần này mik lm xong lâu r :,>
ĐKXĐ: \(x\ne y,x\ne-y\)
\(hpt\Leftrightarrow\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)-\left(\dfrac{1}{x+y}+\dfrac{1}{x-y}\right)=\dfrac{5}{8}-\dfrac{3}{8}\)
\(\Leftrightarrow0=\dfrac{1}{4}\left(VLý\right)\)
Vậy hpt vô nghiệm
1: Xét (O) có
ΔBEC nội tiếp
BC là đường kính
Do đó: ΔBEC vuông tại E
=>CE\(\perp\)AB tại E
Xét (O) có
ΔBDC nội tiếp
BC là đường kính
Do đó: ΔBDC vuông tại D
=>BD\(\perp\)AC tại D
Xét ΔABC có
BD,CE là các đường cao
BD cắt CE tại H
Do đó: H là trực tâm của ΔABC
=>AH\(\perp\)BC tại F
2: Xét ΔFBH vuông tại F và ΔFAC vuông tại F có
\(\widehat{FBH}=\widehat{FAC}\left(=90^0-\widehat{ACF}\right)\)
Do đó: ΔFBH~ΔFAC
=>\(\dfrac{FB}{FA}=\dfrac{FH}{FC}\)
=>\(FB\cdot FC=FA\cdot FH\)
3: Xét tứ giác AEHD có
\(\widehat{AEH}+\widehat{ADH}=90^0+90^0=180^0\)
nên AEHD là tứ giác nội tiếp đường tròn đường kính AH
Tâm I là trung điểm của AH
a.
Do MA là tiếp tuyến tại A \(\Rightarrow MA\perp OA\Rightarrow\widehat{MAO}=90^0\)
Xét hai tam giác OMA và OMB có:
\(\left\{{}\begin{matrix}OA=OB=R\\MA=MB\left(gt\right)\\OM\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta OMA=\Delta OMB\left(c.c.c\right)\)
\(\Rightarrow\widehat{MBO}=\widehat{MAO}=90^0\)
\(\Rightarrow MB\perp OB\Rightarrow MB\) là tiếp tuyến
b.
Gọi H là giao điểm AB và OM
Ta có: \(\left\{{}\begin{matrix}OA=OB=R\\MA=MB\left(gt\right)\end{matrix}\right.\) \(\Rightarrow OM\) là trung trực AB
\(\Rightarrow OM\perp AB\) tại H đồng thời \(HA=HB=\dfrac{AB}{2}\)
Trong tam giác vuông OMA: \(cos\widehat{AOM}=\dfrac{OA}{OM}=\dfrac{2}{2R}=\dfrac{1}{2}\Rightarrow\widehat{AOM}=60^0\)
\(\Rightarrow\widehat{AMO}=90^0-\widehat{AOM}=30^0\)
\(\Rightarrow\widehat{AMB}=2\widehat{AMO}=60^0\)
\(\Rightarrow\Delta AMB\) đều (tam giác cân có 1 góc bằng 60 độ)
Trong tam giác vuông OAH:
\(AH=OA.sin\widehat{AOM}=R.sin60^0=\dfrac{R\sqrt{3}}{3}\)
\(\Rightarrow AB=2AH=R\sqrt{3}\)
\(OH=OA.cos\widehat{AOM}=R.cos30^0=\dfrac{R}{2}\)
\(\Rightarrow HM=OM-OH=\dfrac{3R}{2}\)
\(\Rightarrow S_{ABM}=\dfrac{1}{2}HM.AB=\dfrac{3R^2\sqrt{3}}{4}\)
c.
BE là đường kính \(\Rightarrow\widehat{BAE}\) là góc nt chắn nửa đường tròn
\(\Rightarrow\widehat{BAE}=90^0\Rightarrow AB\perp AE\)
Mà \(AB\perp OM\) (theo cm câu b)
\(\Rightarrow AE||OM\) (cùng vuông góc AB)
a: Xét tứ giác AOMN có
\(\widehat{NAO}+\widehat{NMO}=180^0\)
Do đó: AOMN là tứ giác nội tiếp
Xét (O) có
NM là tiếp tuyến
NA là tiếp tuyến
Do đó: NM=NA
Xét (O) có
PM là tiếp tuyến
PB là tiếp tuyến
Do đó: PM=PB
Ta có: NP=MN+MP
nên NP=AN+BP
a: Gọi (d):y=ax+b là phương trình đường thẳng đi qua hai điểm M và N
(d) đi qua M(3;-1) nên thay x=3 và y=-1 vào (d), ta được:
3a+b=-1
(d) đi qua N(-2;-2) nên thay x=-2 và y=-2 vào (d), ta được:
-2a+b=-2
Theo đề, ta có hệ phương trình:
\(\left\{{}\begin{matrix}3a+b=-1\\-2a+b=-2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5a=1\\3a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{1}{5}\\b=-1-3a=-1-\dfrac{3}{5}=-\dfrac{8}{5}\end{matrix}\right.\)
=>(d): \(y=\dfrac{1}{5}x-\dfrac{8}{5}\)
c: Gọi (d): y=ax+b là phương trình đường thẳng đi qua hai điểm P,Q
(d) đi qua P(2;3) nên thay x=2 và y=3 vào (d), ta được:
2a+b=3
(d) đi qua Q(-2;-1) nên thay x=-2 và y=-1 vào (d), ta được:
-2a+b=-1
Do đó, ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=3\\-2a+b=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2b=2\\2a+b=3\end{matrix}\right.\)
=>b=1 và 2a=3-b=2
=>b=1 và a=1
=>(d): y=x+1