K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: BD=7,5cm

BC=7,5+10=17,5cm

AD là phân giác

=>AB/BD=aC/CD

=>AB/3=AC/4=k

=>AB=3k; AC=4k

AB^2+AC^2=BC^2

=>25k^2=17,5^2

=>k=3,5

=>AB=10,5cm; AC=14cm

AH=10,5*14/17,5=8,4cm

\(AD=\dfrac{2\cdot AB\cdot AC}{AB+AC}\cdot cos45=\dfrac{2\cdot10.5\cdot14}{10.5+14}\cdot\dfrac{\sqrt{2}}{2}=6\sqrt{2}\left(cm\right)\)

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Lời giải:

Theo tính chất tia phân giác:

$\frac{AB}{AC}=\frac{BD}{DC}=\frac{15}{20}=\frac{3}{4}$

Áp dụng hệ thức lượng trong tam giác vuông:

$AB^2=BH.BC$

$AC^2=CH.BC$

$\Rightarrow \frac{BH}{CH}=(\frac{AB}{AC})^2=\frac{9}{16}$

Mà $BH+CH=BC=BD+CD=15+20=35$ (cm)

Do đó:

$BH=35:(9+16).9=12,6$ (cm)

$CH=35:(9+16).16=22,4$ (cm)

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Hình vẽ:

25 tháng 8 2017

  f(x) = (x2 + x + 1)(x2 + x + 2) – 12

          Đặt x2 + x + 1 = y   x2 + x + 2 = y + 1

f(x) = y(y + 1) – 12

                 = y2 + y – 12

                 = y2 – 3y + 4y – 12

                          = y(y – 3) + 4(y – 3)

                 = (y – 3)(y + 4)

          Thay y = x2 + x + 1 , ta được:

          f(x) = (x2 + x – 2)(x2 + x + 5)

          Đến đây ta phân tích tiếp:

          x2 + x – 2 = x2 – x + 2x – 2

                         = x(x – 1) + 2(x – 1)

                          = (x – 1)(x + 2)

x2 + x + 5 = x2 + x + 

Vì nên 

          Và x2 +x + 5 không thể phân tích được nữa.

     Kết quả: f(x) = (x –1)(x + 2)(x2 + x +5).

Ta có: BH+CH=BC

nên BC=63+112=175

Áp dụng hệ thức lượng trong tam giác vuông vào ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=11025\\AC^2=19600\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=105cm\\AC=140cm\end{matrix}\right.\)

Xét ΔABC có 

AD là đường phân giác ứng với cạnh BC

nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)

hay \(\dfrac{BD}{105}=\dfrac{CD}{140}\)

mà BD+CD=BC=175

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{105}=\dfrac{CD}{140}=\dfrac{BD+CD}{105+140}=\dfrac{175}{245}=\dfrac{5}{7}\)

Do đó: \(BD=75\left(cm\right)\)

Ta có: DH+BH=BD

nên DH=BD-BH=75-63=12cm

17 tháng 11 2015

tam giác ABC có AD phân giác nênAB/AC=BD/CD=15/20=3/4

BC=15+20=35

AB/AC=3/4=>AB2/AC2=9/16=>AB2/\(\left(AC^2+AB^2\right)=\)9/25

=>\(\frac{AB^2}{BC^2}=\frac{9}{25}\Rightarrow AB=\sqrt{35^2.\frac{9}{25}}=21\)

tam giác vuông ABC có AH là đường cao 

BH=\(\frac{AB^2}{BC}=12.6\)

tick nhaaaaaaaaaaaaaaaaaaa

30 tháng 7 2016

cho tam giác ABC vuông tại A. AB=15, AC=20, đg phân giác BD. 

a, Tính AD

b, Gọi H là hình chiếu của A trên BC. Tính AH, HB

c, Cm tam giác AID cân

21 tháng 11 2015

tớ làm được rùi . cảm ơn

30 tháng 8 2021

Xét tam giác AHB vuông tại H ta có:

AH^2 = AB^2 - BH^2

=> AH^2 = 36 - 12,96 = 23,04

=> AH = 4,8 (cm)

Gọi độ dài CH là x (cm), AC là y (cm)

Xét tam giác AHC vuông tại H, ta có:

y^2 = x^2 + 4,8^2 = x^2 + 23,04 (1)

Xét tam giác ABC vuông tại A ta có:

y^2 = (3,6 + x)^2 - 6^2 = 12,96 + 7,2x + x^2 - 36 = x^2 + 7,2x - 23,04 (2)

(1),(2) => x^2 + 7,2x - 23,04 = x^2 +23,04

=> 7,2x = 46,08

=> x = 6,4 (cm)

Hay CH = 6,4 cm

=> y = 8 (cm)

Hay AC = 8 cm

BC = BH + CH = 3,6 + 6,4 = 10 (cm)

Vậy BC = 10 cm; AH = 4,8cm; CH = 6,4 cm; AC = 8 cm

 

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2=AH^2+HB^2\)

\(\Leftrightarrow AH^2=6^2-3.6^2=23.04\)

hay AH=4,8(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HC=6,4\left(cm\right)\)

\(\Leftrightarrow BC=10\left(cm\right)\)

hay AC=8(cm)

11 tháng 6 2021

A B C 6 10 H D M N

a, Xét tam giác ABC vuông tại A, đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow AC^2=BC^2-AC^2=100-36=64\Leftrightarrow AC=8\)cm

* Áp dụng hệ thức : 

\(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{36}{10}=\frac{18}{5}\)cm

* Áp dụng hệ thức : 

\(AH^2=CH.BH\)mà \(BC-BH=CH\Rightarrow CH=10-\frac{18}{5}=\frac{32}{5}\)cm 

\(\Rightarrow AH^2=\frac{32}{5}.\frac{18}{5}=\frac{576}{25}\Rightarrow AH=\frac{24}{5}\)cm 

Chu vi tam giác ABC là : \(P_{ABC}=AB+AC+BC=6+10+8=24\)cm 

Diện tích tam giác ABC là : \(S_{ABC}=\frac{1}{2}AB.AC=\frac{1}{2}.6.8=24\)cm2

11 tháng 6 2021

b, Ta có AD là phân giác nên : \(\frac{AB}{BC}=\frac{BD}{CD}\)( t/c )

\(\Rightarrow\frac{CD}{BC}=\frac{BD}{AB}\)( tỉ lệ thức )

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{CD}{BC}=\frac{BD}{AB}=\frac{CD+BD}{AB+BC}=\frac{BC}{16}=\frac{1}{2}\)

\(\Rightarrow\frac{BD}{6}=\frac{1}{2}\Rightarrow BD=3\)cm 

\(\Rightarrow HD=BH-BD=\frac{18}{5}-3=\frac{3}{5}\)cm 

Áp dụng định lí Pytago cho tam giác ADH vuông tại H ta có : 

\(AD^2=HD^2+AH^2=\frac{9}{25}+\frac{576}{25}=\frac{585}{25}\Rightarrow AD=\frac{3\sqrt{65}}{5}\)cm