K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2023

\(D=\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\left(\sqrt{x}-3\right)+7}{\sqrt{x}-3}=2+\dfrac{7}{\sqrt{x}-3}\left(x\ge0;x\ne9\right)\)

Để \(D\) nguyên thì \(2+\dfrac{7}{\sqrt{x}-3}\) nguyên

\(\Rightarrow \dfrac{7}{\sqrt x-3}\) nguyên

\(\Rightarrow7⋮\sqrt{x}-3\)

\(\Rightarrow\sqrt{x}-3\inƯ\left(7\right)\)

\(\Rightarrow\sqrt{x}-3\in\left\{1;7;-1;-7\right\}\)

\(\Rightarrow\sqrt{x}\in\left\{4;10;2;-3\right\}\) mà \(\sqrt{x}\ge0\)

\(\Rightarrow\sqrt{x}\in\left\{4;10;2\right\}\)

\(\Rightarrow x\in\left\{16;100;4\right\}\left(tm.đk.x.nguyên\right)\)

Kết hợp với điều kiện, ta được: \(x\in\left\{4;16;100\right\}\)

9 tháng 10 2023

\(D=\dfrac{2\sqrt[]{x}+1}{\sqrt[]{x}-3}\in Z\left(x\ge0;x\ne9\right)\)

\(\Leftrightarrow2\sqrt[]{x}+1⋮\sqrt[]{x}-3\)

\(\Leftrightarrow2\sqrt[]{x}+1-2\left(\sqrt[]{x}-3\right)⋮\sqrt[]{x}-3\)

\(\Leftrightarrow2\sqrt[]{x}+1-2\sqrt[]{x}+6⋮\sqrt[]{x}-3\)

\(\Leftrightarrow7⋮\sqrt[]{x}-3\)

\(\Leftrightarrow\sqrt[]{x}-3\in U\left(7\right)=\left\{-1;1;-7;7\right\}\)

\(\Leftrightarrow x\in\left\{4;16;100\right\}\)

20 tháng 6 2021

A = \(\dfrac{4\sqrt{x}+9}{2\sqrt{x}+1}\)

Mà \(4\sqrt{x}+9>0\)

\(2\sqrt{x}+1>0\)

=> A > 0

A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}\) = \(2+\dfrac{7}{2\sqrt{x}+1}\)

Mà \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)

<=> \(A\le9\)

<=> 0 < A \(\le9\)

Mà A thuộc Z

<=> A \(\in\){1;2;3;4;5;6;7;8;9}

Đến đây bn thay A vào để tìm x nhé

20 tháng 6 2021

A = \(\dfrac{2\left(2\sqrt{x}+1\right)+7}{2\sqrt{x}+1}=2+\dfrac{7}{2\sqrt{x}+1}\)

Mà \(2\sqrt{x}+1>0< =>\dfrac{7}{2\sqrt{x}+1}>0\)

<=> A > 2

Có \(2\sqrt{x}+1\ge1< =>\dfrac{7}{2\sqrt{x}+1}\le7\)

<=> \(A\le9\)

<=> 2 < A \(\le9\)

Mà A thuộc Z

<=> \(A\in\left\{3;4;5;6;7;8;9\right\}\)

Đến đây bn thay A vào để tìm x nhé

23 tháng 6 2021

A = \(\dfrac{6\sqrt{x}+8}{3\sqrt{x}+2}=2+\dfrac{4}{3\sqrt{x}+2}\)

Có \(3\sqrt{x}+2>0< =>\dfrac{4}{3\sqrt{x}+2}>0\) <=> A > 2

Có: \(3\sqrt{x}+2\ge2< =>\dfrac{4}{3\sqrt{x}+2}\le2\) <=> A \(\le4\)

<=> 2 < A \(\le4\)

Mà A nguyên

<=> \(\left[{}\begin{matrix}A=3\\A=4\end{matrix}\right.\)

TH1: A = 3

<=> \(\dfrac{4}{3\sqrt{x}+2}=1\)

<=> \(3\sqrt{x}+2=4< =>x=\dfrac{4}{9}\)

TH2: A = 4

<=> \(\dfrac{4}{3\sqrt{x}+2}=2< =>3\sqrt{x}+2=2< =>x=0\)

Bài 5:

\(x^2+2mx+2m-6=0\)

\(\text{Δ}=\left(2m\right)^2-4\left(2m-6\right)\)

\(=4m^2-8m+24\)

\(=4m^2-8m+4+20\)

\(=\left(2m-2\right)^2+20>=20>0\forall m\)

=>Phương trình luôn có hai nghiệm phân biệt

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{-2m}{1}=-2m\\x_1x_2=\dfrac{c}{a}=\dfrac{2m-6}{1}=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=2x_1x_2+20\)

=>\(\left(x_1+x_2\right)^2-2x_1x_2-2x_1x_2=20\)

=>\(\left(-2m\right)^2-4\left(2m-6\right)=20\)

=>\(4m^2-8m+24-20=0\)

=>\(4m^2-8m+4=0\)

=>\(\left(2m-2\right)^2=0\)

=>2m-2=0

=>2m=2

=>m=1(nhận)

Câu 4:

a: \(2x^2-2x-m=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot2\cdot\left(-m\right)\)

\(=4+8m\)

Để phương trình có hai nghiệm phân biệt thì 8m+4>0

=>8m>-4

=>\(m>-\dfrac{1}{2}\)

b: Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-2\right)}{2}=\dfrac{2}{2}=1\\x_1x_2=\dfrac{c}{a}=\dfrac{-m}{2}\end{matrix}\right.\)

\(\left(1-x_1x_2\right)^2+4\cdot\left(x_1^2+x_2^2\right)=16\)

=>\(\left(1+\dfrac{m}{2}\right)^2+4\cdot\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=16\)

=>\(\left(\dfrac{m+2}{2}\right)^2+4\left[1^2-2\cdot\dfrac{-m}{2}\right]=16\)

=>\(\dfrac{1}{4}\left(m^2+4m+4\right)+4\left(1+m\right)=16\)

=>\(\dfrac{1}{4}m^2+m+1+4+4m-16=0\)

=>\(\dfrac{1}{4}m^2+5m-11=0\)

=>\(m^2+20m-44=0\)

=>(m+22)(m-2)=0

=>\(\left[{}\begin{matrix}m+22=0\\m-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=-22\left(loại\right)\\m=2\left(nhận\right)\end{matrix}\right.\)

NV
12 tháng 1

5.

\(\Delta'=1+2m\)

a.

Phương trình có 2 nghiệm pb khi:

\(1+2m>0\Rightarrow m>-\dfrac{1}{2}\)

b.

Khi pt có 2 nghiệm, theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=-\dfrac{m}{2}\end{matrix}\right.\)

\(\left(1-x_1x_2\right)^2+4\left(x_1^2+x_2^2\right)=16\)

\(\Leftrightarrow\left(1-x_1x_2\right)^2+4\left(x_1+x_2\right)^2-8x_1x_2=16\)

\(\Leftrightarrow\left(1+\dfrac{m}{2}\right)^2+4.1^2+4m=16\)

\(\Leftrightarrow\dfrac{m^2}{4}+5m-11=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-22< -\dfrac{1}{2}\left(loại\right)\end{matrix}\right.\)

5.

\(\Delta'=m^2-\left(2m-6\right)=\left(m-1\right)^2+5>0;\forall m\)

Pt luôn có 2 nghiệm pb

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2m\\x_1x_2=2m-6\end{matrix}\right.\)

\(x_1^2+x_2^2=2x_1x_2+20\)

\(\Leftrightarrow\left(x_1+x_2\right)^2=4x_1x_2+20\)

\(\Leftrightarrow4m^2=4\left(2m-6\right)+20\)

\(\Leftrightarrow m^2-2m+1=0\Rightarrow m=1\)

Chọn B

15 tháng 6 2019

chưa học

15 tháng 6 2019

Đề là giải pt hả bạn?

11 tháng 12 2021

\(\Leftrightarrow x=0\Leftrightarrow\left\{{}\begin{matrix}5-m=y\\3+m=y\end{matrix}\right.\Leftrightarrow y=4\Leftrightarrow5-m=4\Leftrightarrow m=1\)

NV
11 tháng 3 2022

\(\left(xy+3\right)^2+\left(x+y\right)^2=8\)

\(\Leftrightarrow x^2y^2+x^2+y^2+1=-8xy\)

\(\dfrac{x}{x^2+1}+\dfrac{y}{y^2+1}=-\dfrac{1}{4}\Leftrightarrow\dfrac{\left(xy+1\right)\left(x+y\right)}{x^2y^2+x^2+y^2+1}=-\dfrac{1}{4}\)

\(\Rightarrow\dfrac{\left(xy+1\right)\left(x+y\right)}{-8xy}=-\dfrac{1}{4}\)

\(\Rightarrow\left(xy+1\right)\left(x+y\right)=2xy\)

\(\Rightarrow x+y=\dfrac{2xy}{xy+1}\)

Thế vào pt ban đầu:

\(\left(xy+3\right)^2+\left(\dfrac{2xy}{xy+1}\right)^2=8\)

Đặt \(xy+1=t\Rightarrow\left(t+2\right)^2+4\left(\dfrac{t-1}{t}\right)^2=8\)

\(\Rightarrow\left(t^2+2t\right)^2-4\left(t^2+2t\right)+4=0\)

\(\Leftrightarrow\left(t^2+2t-2\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}t=-1-\sqrt{3}\\t=-1+\sqrt{3}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}xy=-2-\sqrt{3}\Rightarrow x+y=1+\sqrt{3}\\xy=-2+\sqrt{3}\Rightarrow x+y=1-\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow x;y\) là nghiệm của: \(\left[{}\begin{matrix}X^2-\left(1+\sqrt{3}\right)X-2-\sqrt{3}=0\\X^2-\left(1-\sqrt{3}\right)X-2+\sqrt{3}=0\end{matrix}\right.\)

\(\Rightarrow...\)

3 tháng 5 2023

BÀI 3:

loading...

3 tháng 5 2023

bài 4:

loading...

b: Xét ΔABE vuông tại A có AH là đường cao ứng với cạnh huyền BE

nên \(BH\cdot BE=AB^2\left(1\right)\)

Xét ΔABC vuông tại B có BH là đường cao ứng với cạnh huyền AC

nên \(AH\cdot AC=AB^2\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE=AH\cdot AC\)