Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
a: Xét tứ giác ADBM có
E là trung điểm của DM
E là trung điểm của AB
Do đó: ADBM là hình bình hành
mà DA=DB
nên ADBM là hình thoi
b: Xét tứ giác ACDM có
DM//AC
DM=AC
Do đó: ACDM là hình bình hành
a: Xét tứ giác AEMF có
\(\widehat{MEA}=\widehat{MFA}=\widehat{FME}=90^0\)
Do đó: AEMF là hình chữ nhật
a)Tứ giác AEMF có :
\(\widehat{MEA}=\widehat{MFA}=\widehat{FME}=90^0\)
=>AEMF là hình chữ nhật
\(a,x\left(-3x+5\right)+3x\left(x+1\right)-40=0\)
\(\left(x.-3x\right)+\left(5x\right)+3x\left(x+1\right)-40=0\)
\(-3x^2+5x+\left(3x.x\right)+\left(3x.1\right)-40=0\)
\(-3x^2+5x+3x^2+3x-40=0\)
\(\left(-3x^2+3x^2\right)+5x+3x-40=0\)
\(8x-40=0\)
\(8x=0+40=40\)
\(x=40:8=5\)
a) \(x\left(5-3x\right)+3x\left(x+1\right)-40=0\)
\(\Rightarrow5x-3x^2+3x^2+3x-40=0\)
\(\Rightarrow8x-40=0\)
\(\Rightarrow8x=40\)
\(\Rightarrow x=5\)
b) \(\left(12x-5\right)\left(4x-1\right)+\left(3x-7\right)\left(1-16x\right)=81\)
\(\Rightarrow48x^2-12x-20x+5+3x-48x^2-7+112x=81\)
\(\Rightarrow83x=83\)
\(\Rightarrow x=1\)
a) \(\dfrac{x^2+2}{x^3-1}+\dfrac{x+1}{x^2+x+1}+\dfrac{1}{1-x}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{x+1}{x^2+x+1}+\dfrac{1}{1-x}\)
\(=\dfrac{x^2+2}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{\left(x-1\right)\left(x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{\left(x^2+2\right)+\left(x-1\right)\left(x+1\right)-\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2+2+x^2-1-x^2-x-1}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\dfrac{x}{x^2+x+1}\)
`3)(x+4)/(x-3)-(x-3)/(x+4)=(x^2+18x+7)/(x^2+x-12)`
`đk:x ne 3,x ne -4`
Nhân 2 vế với `(x-3)(x+4) ne 0` ta có:
`(x+4)^2-(x-3)^2=x^2+18x+7`
`<=>x^2+8x+16-x^2+6x-9=x^2+18x+7`
`<=>14x+7=x^2+18x+7`
`<=>x^2+4x=0`
`<=>x(x+4)=0`
Vì `x ne -4=>x+4 ne 0`
`<=>x=0`
Vậy `S={0}`