Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sao không viết câu hỏi ra đây luôn đi chứ có thể nhièu người biết mà không có sách lắm! Sao hướng dẫn được
Câu 3:
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{x+y}{3+2}=\dfrac{90}{5}=18\)
Do đó: x=54; y=36
c. \(\left|\dfrac{8}{4}-\left|x-\dfrac{1}{4}\right|\right|-\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{8}{4}-x+\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{8}{4}+x-\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{9}{4}-x\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{7}{4}+x\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\dfrac{9}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\\x=\dfrac{9}{4}-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}\dfrac{7}{4}+x-\dfrac{1}{2}=\dfrac{3}{4}\\-\dfrac{7}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\\x=-3\end{matrix}\right.\)
Ở nơi x=9/4-1/2 là x-9/4-1/2 nha
a. -1,5 + 2x = 2,5
<=> 2x = 2,5 + 1,5
<=> 2x = 4
<=> x = 2
b. \(\dfrac{3}{2}\left(x+5\right)-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{3}{2}x+\dfrac{15}{2}-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{9x}{6}+\dfrac{45}{6}-\dfrac{3}{6}=\dfrac{8}{6}\)
<=> 9x + 45 - 3 = 8
<=> 9x = 8 + 3 - 45
<=> 9x = -34
<=> x = \(\dfrac{-34}{9}\)
3:
a: C=3x^2+5y^3+2
D=3x^2+4y^3-3/4
Bậc của C là 3
b: Khi x=-1 và y=1 thì D=3+4-3/4=7-3/4=25/4
c: C-D
=3x^2+5y^3+2-3x^2-4y^3+3/4
=y^3+11/4
a/ Tam giác AMN cân tại A (gt). \(\Rightarrow\) \(\widehat{AMN}=\widehat{ANM};AM=AN.\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (cmt).
+ \(\widehat{AMB}=\widehat{ANC}\left(\widehat{AMN}=\widehat{ANM}\right).\)
+ MB = NC (gt).
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
\(\Rightarrow\) AB = AC (cặp cạnh tương ứng).
Xét tam giác ABC có: AB = AC (cmt).
\(\Rightarrow\) Tam giác ABC cân tại A.
b/ Tam giác ABC cân tại A (cmt) \(\Rightarrow\) \(\widehat{ABC}=\widehat{ACB}.\)
Mà \(\widehat{ABC}=\widehat{MBH;}\widehat{ACB}=\widehat{NCK}\text{}\) (đối đỉnh).
\(\Rightarrow\) \(\widehat{MBH}=\widehat{NCK}.\)
Xét tam giác MBH và tam giác NCK \(\left(\widehat{BHM}=\widehat{CKN}=90^o\right)\)có:
+ MB = NC (gt).
+ \(\widehat{MBH}=\widehat{NCK}\left(cmt\right).\)
\(\Rightarrow\) Tam giác MBH = Tam giác NCK (cạnh huyền - góc nhọn).
c/ Tam giác MBH = Tam giác NCK (cmt).
\(\Rightarrow\) \(\widehat{BMH}=\widehat{CNK}\) (cặp góc tương ứng).
Xét tam giác OMN có: \(\widehat{NMO}=\widehat{MNO}\) (do \(\widehat{BMH}=\widehat{CNK}\)).
\(\Rightarrow\) Tam giác OMN tại O.
Câu 10
a) \(-\dfrac{4}{3}+x=\dfrac{2}{3}\)
\(x=\dfrac{2}{3}+\dfrac{4}{3}\)
\(x=2\)
b) \(\dfrac{x}{7}=\dfrac{y}{9}=\dfrac{z}{8}\) \(\Rightarrow\dfrac{x}{7}=\dfrac{2y}{18}=\dfrac{3z}{24}\)
và \(x+2y-3z=-8\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{7}=\dfrac{2y}{18}=\dfrac{3z}{24}=\dfrac{x+2y-3z}{7+18-24}=\dfrac{-8}{1}=-8\)
\(\dfrac{x}{7}=-8\Rightarrow x=-8.7=-56\)
\(\dfrac{y}{9}=-8\Rightarrow y=-8.9=-72\)
\(\dfrac{z}{8}=-8\Rightarrow z=-8.8=-64\)
Vậy \(x=-56;y=-72;z=-64\)
c) \(\left(3x-y+5\right)^2+\left|x-\dfrac{2}{3}\right|\le0\)
Do \(\left(3x-y+5\right)^2\ge0;\left|x-\dfrac{2}{3}\right|\ge0\)
\(\Rightarrow\left(3x-y+5\right)^2+\left|x-\dfrac{2}{3}\right|=0\)
\(\Rightarrow\left(3x-y+5\right)^2=0;\left|x-\dfrac{2}{3}\right|=0\)
*) \(\left|x-\dfrac{2}{3}\right|=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\)
\(x=\dfrac{2}{3}\)
*) \(\left(3x-y+5\right)^2=0\)
\(\Rightarrow3x-y+5=0\)
\(3.\dfrac{2}{3}-y+5=0\)
\(2-y+5=0\)
\(-y+7=0\)
\(y=7\)
Vậy \(x=\dfrac{2}{3};y=7\)
Câu 11:
Gọi x (học sinh, y (học sinh), z (học sinh), t (học sinh) lần lượt là số học sinh giỏi, khá, trung bình, yếu của khối 7 theo chỉ tiêu của nhà trường
Do số học sinh giỏi, khá, trung bình, yếu lần lượt tỉ lệ với 9; 14; 11; 3 nên:
\(\dfrac{x}{9}=\dfrac{y}{14}=\dfrac{z}{11}=\dfrac{t}{3}\)
Do số học sinh khá nhiều hơn số học sinh trung bình là 15 học sinh nên:
\(y-z=15\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{9}=\dfrac{y}{14}=\dfrac{z}{11}=\dfrac{t}{3}=\dfrac{y-z}{14-11}=\dfrac{15}{3}=5\)
\(\dfrac{x}{9}=5\Rightarrow x=5.9=45\)
\(\dfrac{y}{14}=5\Rightarrow y=5.14=70\)
\(\dfrac{z}{11}=5\Rightarrow z=5.11=55\)
\(\dfrac{t}{3}=5\Rightarrow t=5.3=15\)
Vậy số học sinh giỏi, khá, trung bình, yếu của khối 7 theo chỉ tiêu của nhà trường lần lượt là: 45 học sinh; 70 học sinh; 55 học sinh; 15 học sinh
Câu 11:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{9}=\dfrac{b}{14}=\dfrac{c}{11}=\dfrac{d}{3}=\dfrac{b-c}{14-11}=5\)
Do đó: a=45; b=70; c=55; d=15
1: \(\Leftrightarrow3^x\cdot\dfrac{1}{7}\cdot3+3^x\cdot9\cdot\dfrac{1}{2}=\dfrac{23}{14}\cdot3^5\)
=>\(3^x\left(\dfrac{3}{7}+\dfrac{9}{2}\right)=\dfrac{23}{14}\cdot3^5\)
=>\(3^x\cdot\dfrac{69}{14}=\dfrac{23}{14}\cdot3^5\)
=>\(3^{x+1}\cdot\dfrac{23}{14}=\dfrac{23}{14}\cdot3^5\)
=>\(3^{x+1}=3^5\)
=>x+1=5
=>x=4
2: \(\Leftrightarrow4^x\cdot\dfrac{64}{5}+4^x\cdot\dfrac{4}{7}=4^5\cdot\dfrac{117}{35}\)
=>\(4^x\left(\dfrac{64}{5}+\dfrac{4}{7}\right)=4^5\cdot\dfrac{117}{35}\)
=>\(4^{x+1}\cdot\left(\dfrac{16}{5}+\dfrac{1}{7}\right)=4^5\cdot\dfrac{117}{35}\)
=>\(4^{x+1}=4^5\)
=>x+1=5
=>x=4
3:
\(\Leftrightarrow2^x\cdot2\cdot\dfrac{-3}{20}+2^x\cdot4=-\dfrac{148}{5}\)
=>\(2^x\cdot\left(-\dfrac{3}{10}+4\right)=-\dfrac{148}{5}\)
=>\(2^x=-8\)
=>\(x\in\varnothing\)
4: \(\Leftrightarrow5^x\cdot125+\dfrac{5}{6}\cdot5^x\cdot625=\dfrac{275}{2}\)
=>\(5^x\left(125+625\cdot\dfrac{5}{6}\right)=\dfrac{275}{2}\)
=>\(5^x=\dfrac{33}{155}\)
=>\(x\in\varnothing\)
\(B=\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+...+\dfrac{1}{110}\)
\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{10.11}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{10}-\dfrac{1}{11}\)
\(=\dfrac{1}{2}-\dfrac{1}{11}< \dfrac{1}{2}\)
thanks