Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c. \(\left|\dfrac{8}{4}-\left|x-\dfrac{1}{4}\right|\right|-\dfrac{1}{2}=\dfrac{3}{4}\)
\(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{8}{4}-x+\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{8}{4}+x-\dfrac{1}{4}\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left|\dfrac{9}{4}-x\right|-\dfrac{1}{2}=\dfrac{3}{4}\\\left|\dfrac{7}{4}+x\right|-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}\dfrac{9}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\\x=\dfrac{9}{4}-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\\\left[{}\begin{matrix}\dfrac{7}{4}+x-\dfrac{1}{2}=\dfrac{3}{4}\\-\dfrac{7}{4}-x-\dfrac{1}{2}=\dfrac{3}{4}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{2}\\x=-3\end{matrix}\right.\)
Ở nơi x=9/4-1/2 là x-9/4-1/2 nha
a. -1,5 + 2x = 2,5
<=> 2x = 2,5 + 1,5
<=> 2x = 4
<=> x = 2
b. \(\dfrac{3}{2}\left(x+5\right)-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{3}{2}x+\dfrac{15}{2}-\dfrac{1}{2}=\dfrac{4}{3}\)
<=> \(\dfrac{9x}{6}+\dfrac{45}{6}-\dfrac{3}{6}=\dfrac{8}{6}\)
<=> 9x + 45 - 3 = 8
<=> 9x = 8 + 3 - 45
<=> 9x = -34
<=> x = \(\dfrac{-34}{9}\)
`@`Bảng tần số:
\begin{array}{|c|c|c|}\hline \text{Giá trị (x)}&2&3&4&5&6&7&8&9&10&\\\hline \text{Tần số (n)}&3&5&4&4&4&3&3&2&1&N=29\\\hline\end{array}
`@` Mốt của dấu hiệu là: `3 ( n = 5)`
x | -3 | 1 | |||
x+3 | - | 0 | + | \(|\) | + |
x-1 | - | \(|\) | - | 0 | + |
+) Nếu \(-3\le x\Leftrightarrow|x-1|=1-x\)
\(|x+3|=-x-3\)
\(pt\Leftrightarrow1-x-x-3=5\)
\(\Leftrightarrow-2x-2=5\)
\(\Leftrightarrow-2x=7\)
\(\Leftrightarrow x=\frac{-7}{2}\left(tm\right)\)
+) Nếu \(-3< x< 1\Leftrightarrow|x-1|=1-x\)
\(|x+3|=x+3\)
\(pt\Leftrightarrow1-x+x+3=5\)
\(\Leftrightarrow4=5\) ( vô lí )
+) Nếu \(x\ge1\Leftrightarrow|x-1|=x-1\)
\(|x+3|=x+3\)
\(pt\Leftrightarrow x-1+x+3=5\)
\(\Leftrightarrow2x+2=5\)
\(\Leftrightarrow x=\frac{3}{2}\left(tm\right)\)
Vậy ....
Ta có:\(|x-1|\ge0\)
\(|x+3|\ge0\)
Theo bài:
\(|x-1|+|x+3|=5\)
\(\rightarrow x-1+x+3=5\)
\(\rightarrow\left(x+x\right)+[\left(-1\right)+3]=5\)
\(\rightarrow2x+2=5\)
\(\rightarrow2x=5-2\)
\(\rightarrow2x=3\)
\(\rightarrow x=3:2\)
\(\rightarrow x=\frac{3}{2}\)
a) Xét tam giác ABE và tam giác ACE có:
+ AE chung.
+ AB = AC (gt).
+ BE = CE (E là trung điểm của BC).
=> Tam giác ABE = Tam giác ACE (c - c - c).
b) Xét tam giác ABC có: AB = AC (gt).
=> Tam giác ABC cân tại A.
Mà AE là đường trung tuyến (E là trung điểm của BC).
=> AE là phân giác ^BAC (Tính chất các đường trong tam giác cân).
c) Xét tam giác ABC cân tại A có:
AE là phân giác ^BAC (cmt).
=> AE là đường cao (Tính chất các đường trong tam giác cân).
=> AE \(\perp\) BC.
Xét tam giác BIE và tam giác CIE:
+ IE chung.
+ BE = CE (E là trung điểm của BC).
+ ^BEI = ^CEI ( = 90o).
=> Tam giác BIE = Tam giác CIE (c - g - c).
tl người ta ik:)
.....