Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(5x=3y\Rightarrow x=\dfrac{3y}{5}\)
Thay \(x=\dfrac{3y}{5}\) vào biểu thức \(x^2-y^2=-4\) ta có:
\(\left(\dfrac{3y}{5}\right)^2-y^2=-4\)
\(\dfrac{9y^2}{25}-y^2=-4\)
\(-\dfrac{16}{25}y^2=-4\)
\(y^2=-\dfrac{4}{\dfrac{-16}{25}}\)
\(y^2=\dfrac{25}{4}\)
\(\Rightarrow y=-\dfrac{5}{2};y=\dfrac{5}{2}\)
*) \(y=-\dfrac{5}{2}\Rightarrow x=\dfrac{3.\left(-\dfrac{5}{2}\right)}{5}=-\dfrac{3}{2}\)
*) \(y=\dfrac{5}{2}\Rightarrow x=\dfrac{3.\dfrac{5}{2}}{5}=\dfrac{3}{2}\)
Vậy ta được các cặp giá trị \(\left(x;y\right)\) thỏa mãn:
\(\left(-\dfrac{3}{2};-\dfrac{5}{2}\right);\left(\dfrac{3}{2};\dfrac{5}{2}\right)\)
Lời giải:
Áp dụng tính chất tổng 3 góc trong một tam giác bằng $180^0$
a.
$x=180^0-80^0-45^0=55^0$
b.
$y=180^0-30^0-90^0=60^0$
c.
$z=180^0-30^0-25^0=125^0$
Đổi 30 phút = 0,5 giờ
Quãng sông từ A đến B dài là:
\(x\) \(\times\) 0,5 + y \(\times\) 1 = 0,5\(x\) + y (km)
Kết luận Quãng đường từ A đên B dài: 0,5\(x\) + y (km)
Lời giải:
Áp dụng tính chất tổng 3 góc trong 1 tam giác bằng $180^0$
Hình 1: Hình không rõ ràng. Bạn xem lại.
Hình 2: $x+x+120^0=180^0$
$2x+120^0=180^0$
$2x=60^0$
$x=60^0:2=30^0$
Hình 3:
$2y+y+90^0=180^0$
$3y=180^0-90^0=90^0$
$y=90^0:3=30^0$
Bài 4
a) Do AM là đường trung tuyến của ∆ABC (gt)
⇒ M là trung điểm của BC
⇒ BM = CM
Xét ∆AMC và ∆DMB có:
AM = DM (gt)
∠AMC = ∠DMB (đối đỉnh)
CM = BM (cmt)
⇒ ∆AMC = ∆DMB (c-g-c)
⇒ ∠ACM = ∠DBM (hai góc tương ứng)
Mà ∠ACM và ∠DBM là hai góc so le trong
⇒ AC // BD
Mà AC ⊥ AB (do ∆ABC vuông tại A)
⇒ BD ⊥ AB
⇒ ∠ABD = 90⁰
b) Do ∆AMC = ∆DMB (cmt)
⇒ AC = DB (hai cạnh tương ứng)
Xét hai tam giác vuông: ∆ABC và ∆BAD có:
AB là cạnh chung
AC = BD (cmt)
⇒ ∆ABC = ∆BAD (hai cạnh góc vuông)
c) Do ∆ABC = ∆BAD (cmt)
⇒ BC = AD (hai cạnh tương ứng)
Lại có:
AM = MD (gt)
⇒ M là trung điểm của AD
⇒ AM = AD : 2
Mà AD = BC (cmt)
⇒ AM = BC : 2
Bài 1
a) Do BN và CP là hai đường trung tuyến của ABC (gt)
G là giao điểm của BN và CP (gt)
⇒ G là trọng tâm của ABC
⇒ AG là đường trung tuyến của ABC
⇒ AM là đường trung tuyến của ABC
b) Do ABC cân tại A (gt)
⇒ AB = AC
Do AM là đường trung tuyến của ∆ABC (cmt)
⇒ M là trung điểm của BC
⇒ BM = CM
Xét ∆AMB và ∆AMC có:
AB = AC (cmt)
BM = CM (cmt)
AM là cạnh chung
⇒ ∆AMB = ∆AMC (c-c-c)
c) Do ∆AMB = ∆AMC (cmt)
⇒ ∠BAM = ∠CAM (hai góc tương ứng)
⇒ AM là tia phân giác của ∠BAC
d) Do AB = AC (cmt)
⇒ A nằm trên đường trung trực của BC (1)
Do BM = CM (cmt)
⇒ M nằm trên đường trung trực của BC (2)
Từ (1) và (2) ⇒ AM là đường trung trực của BC
e) Do ∆ABC cân tại A (gt)
⇒ ∠ABC = ∠ACB
⇒ ∠PBC = ∠NCB
Do CP là đường trung tuyến của ∆ABC (gt)
⇒ P là trung điểm của AB
⇒ BP = AB : 2
Do BN là đường trung tuyến của ∆ABC (gt)
⇒ N là trung điểm của AC
⇒ CN = AC : 2
Mà AB = AC
⇒ BP = CN
Xét ∆PBC và ∆NCB có:
BP = CN (cmt)
∠PBC = ∠NCB (cmt)
BC là cạnh chung
⇒ ∆PBC = ∆NCB (c-g-c)
⇒ CP = BN (hai cạnh tương ứng)
Hay BN = CP