Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Ta có: Om là tia phân giác của \(\widehat{xOy}\)
nên \(\widehat{xOm}=\widehat{yOm}=\dfrac{180^0}{2}=90^0\)
Do đó: Om\(\perp\)xy
b: Ta có: \(\widehat{xOa}+\widehat{mOa}=90^0\)
\(\widehat{mOb}+\widehat{yOb}=90^0\)
mà \(\widehat{mOa}=\widehat{yOb}\)
nên \(\widehat{xOa}=\widehat{mOb}\)
Các em đăng câu hỏi lên diễn đàn thì cần đăng đầy đủ nội dung câu hỏi lên trên này. Có như vậy mọi người mới biết yêu cầu của đề bài và trợ giúp các em tốt nhất. Cảm ơn các em đã đồng hành cùng Olm.
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó:ΔABM=ΔACM
b: ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
c: BC=6cm
nên BM=3cm
=>AM=4cm
d: Xét ΔABC cân tại A có AM là đường cao
nên AM là phân giác của góc BAC
Xét ΔABC có
AM là đường phân giác
BI là đường phân giác
AM cắt BI tại I
Do đó: CI là tia phân giác của góc ACB
Ta có \(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\\\frac{y}{5}=\frac{z}{7}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{15}=\frac{y}{20}\\\frac{y}{20}=\frac{z}{28}\end{cases}}\Leftrightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x}{30}=\frac{3y}{60}=\frac{2x+3y-z}{30+60-28}=\frac{372}{62}=8\)
=> x = 15 x 8 = 120
; y = 20 x 8 = 160 ;
z = 28 x 8 = 224
Vậy x = 120 ; y = 160 ; z = 224