Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3 :
A B S M C P N x y 1 2 z 1 2
a) Kéo dài tia NM và NM cắt BC tại S
Khi đó ta có :
\(\hept{\begin{cases}\widehat{ABC}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\\\widehat{MNP}=\widehat{BSM}\left(\text{ 2 góc so le trong }\right)\end{cases}}\Rightarrow\widehat{ABC}=\widehat{MNP}\Rightarrow\widehat{MNP}=40^o\)
b) Vẽ \(\hept{\begin{cases}\text{Bx là tia phân giác của }\widehat{ABC}\\\text{Ny là tia phân giác của }\widehat{MNP}\end{cases}}\)
\(\Rightarrow\widehat{B_1}=B_2=\widehat{N_1}=\widehat{N_2}=\frac{\widehat{ABC}}{2}=\frac{\widehat{MNP}}{2}=\frac{40^o}{2}=20^o\left(\text{do }\widehat{ABC}=\widehat{MNP}\right)\)
Vẽ Sz // Bx => \(\widehat{B_2}=\widehat{S_1}\)
Lại có \(\widehat{BSN}=\widehat{MSP}\Rightarrow\frac{\widehat{BSN}}{2}=\frac{\widehat{MSP}}{2}\Rightarrow\widehat{S_2}=\widehat{N_1}\)mà \(\widehat{S_2}\text{ và }\widehat{N_1}\)là 2 góc so le trong
=> Sz // Ny mà Sz // Bx => Bx // Ny hay tia phân giác của 2 góc \(\widehat{ABC}\text{ và }\widehat{MNP}\)song song nhau
Bài 1:
x y m B A C 1 1 2 1
Qua B, vẽ tia Bm sao cho Bm // Ax
Bm // Ax ( cách vẽ ) => góc A1 + góc B1 = 180o ( trong cùng phía )
Mà góc A1 = 140o ( giả thiết ) => góc B1 = 40o
Ta có: góc B1 + góc B2 = góc ABC
Mà góc ABC = 70o ( giả thiết ); góc B1 = 40o ( chứng minh trên )
=> góc B2 = 30o
Ta có: góc B2 + góc C1 = 30o + 150o = 180o
Mà hai góc này ở vị trí trong cùng phía
=> Bm // Cy ( dấu hiệu nhận biết 2 đường thẳng song song )
Ta lại có:
Ax // Bm ( cách vẽ ); Cy // Bm ( chứng minh trên )
=> Ax // Cy ( tính chất 3 quan hệ từ vuông góc đến song song ) ( đpcm )
Bài 3:
A B C F E G N M H 1 2
a) Chứng minh AH < \(\dfrac{1}{2}\) ( AB + AC )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AB ( quan hệ giữa đường vuông góc và đường xiên ) ( 1 )
+) Vì AH vuông góc với BC ( giả thiết )
=> AH < AC ( quan hệ giữa đường vuông góc và đường xiên ) ( 2 )
+) Từ ( 1 ) và ( 2 ) => AH + AH < AB + AC
=> 2 . AH < AB + AC
=> AH < \(\dfrac{1}{2}\) ( AB + AC ) ( đpcm )
b) Chứng minh EF = BC
+) Vì BM là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{BG}{BM}=\dfrac{2}{3}\)
=> \(\dfrac{MG}{BG}=\dfrac{1}{2}\)
=> 2 . MG = BG
Mà EM = MG ( do BM là đường trung tuyến của tam giác ABC )
=> EM + MG = BG => EG = BG
+) Vì CN là đường trung tuyến của tam giác ABC ( giả thiết )
=> \(\dfrac{CG}{CN}=\dfrac{2}{3}\)
=> \(\dfrac{GN}{CG}=\dfrac{1}{2}\)
=> 2 . GN = CG
Mà FN = GN ( do CN là đường trung tuyến của tam giác ABC )
=> FN + GN = CG => FG = CG
Góc G1 = góc G2 ( đối đỉnh )
Xét tam giác FEG và tam giác CBG có:
FG = CG ( chứng minh trên )
EG = BG ( chứng minh trên )
Góc G1 = góc G2 ( chứng minh trên )
=> tam giác FEG = tam giác CBG ( c.g.c )
=> EF = BC ( 2 cạnh tương ứng ) ( đpcm )
Vào lúc: 2021-08-18 17:26:31 Xem câu hỏi
EM mong ad khắc phục các lỗi sau ạ
Bạn cùng trường bị khóa .
Lúc trc ai online thì hiện chấm xanh nhưng giờ thì không
Trang chat là bingbe không vào được
Biết trung bình cộng của hai số bằng 108. Tìm hai số đó, biết rằng số lớn gấp 5 lần số bé.
Ta có :
\(A=\dfrac{3x+5}{2+x}\\ \Rightarrow A=\dfrac{3\left(2+x\right)-1}{2+x}=3-\dfrac{1}{2+x}\)
Để A đạt giá trị nguyên thì : \(1⋮\left(2+x\right)\)
\(\Rightarrow\left(2+x\right)\inƯ\left(1\right)=\left\{-1;1\right\}\\ \Rightarrow x\in\left\{-3;-1\right\}\)
Vậy \(S=\left\{-3;-1\right\}\)
Từ chỗ \(\dfrac{3x+5}{2+x}\)ra chỗ \(\dfrac{3\left(2x+1\right)-1}{2+x}\)là sao mình ko hiểu??
Ta có:
\(4x^3-3=29\)
\(\Leftrightarrow4x^3=32\)
\(\Leftrightarrow x^3=8\)
\(\Leftrightarrow x^3=2^3\)
\(\Leftrightarrow x=2\)
\(\Leftrightarrow\dfrac{x+16}{9}=\dfrac{2+16}{9}=\dfrac{18}{9}=2\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{y-25}{-16}=2\\\dfrac{z+49}{25}=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y-25=-16.2=-32\\z+49=25.2=50\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}y=-7\\z=1\end{matrix}\right.\)
\(\Leftrightarrow x+2y+3z=2+\left(-14\right)+3=-9\)
Vậy \(x+2y+3z=-9\)
ta có: 42'=7/10(h)
gọi độ dài quãng đường AB là x(km) (x>0)
thời gian xe tải đi từ A đến B là x/40 (h)
thời gian xe con đi từ A đến B là x/50 (h)
vì xe con đến B trước xe tải 7/10(h) nên ta có phương trình:
\(\dfrac{x}{50}+\dfrac{7}{10}=\dfrac{x}{40}\Leftrightarrow\dfrac{x}{50}-\dfrac{x}{40}=-\dfrac{7}{10}\\ \Leftrightarrow\dfrac{4x-5x}{200}=\dfrac{-7\cdot20}{200}\Leftrightarrow-x=-140\left(km\right)\)
Vậy quãng đường AB dài 140km
chỗ này mình bổ sung thêm
\(-x=-140\Leftrightarrow x=140\left(km\right)\)
Bài 4:
a: \(\dfrac{x}{0.9}=\dfrac{5}{6}\)
\(\Leftrightarrow x=\dfrac{5}{6}\cdot\dfrac{9}{10}=\dfrac{3}{4}\)
b: \(\dfrac{-6}{x}=\dfrac{9}{-15}\)
\(\Leftrightarrow x=\dfrac{-6\cdot\left(-15\right)}{9}=10\)