K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: d1 vuông góc d

=>d1: 4x+y+c=0

Thay x=2 và y=-3 vào d1, ta được:

c+8-3=0

=>c=-5

b: d2//d

=>d2: -x+4y+c=0

Thay x=2 và y=-3 vào d2, ta được:

c-2-12=0

=>c=14

c: \(d\left(E;\left(d\right)\right)=\dfrac{\left|2\cdot\left(-1\right)+\left(-3\right)\cdot4-1\right|}{\sqrt{1^2+4^2}}=\dfrac{15}{\sqrt{17}}\)

NV
17 tháng 1 2022

\(\left(\overrightarrow{BA};\overrightarrow{BC}\right)=\widehat{ABC}=90^0-35^0=55^0\)

 

Bạn cần giải chi tiết câu nào vậy bạn?

14 tháng 4 2022

Câu 1 đến câu 5 á mình làm rồi mà thấy saii saii sao á bạn giúp mình nha

10 tháng 12 2021

b: Để phương trình có hai nghiệm cùng dấu thì 

\(\left\{{}\begin{matrix}4m^2-4\left(m-2\right)\left(m+1\right)>0\\\dfrac{m+1}{m-2}>0\\\dfrac{-2m}{m-2}>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4m^2-4m^2+4m+8>0\\m>2\\0< m< 2\end{matrix}\right.\Leftrightarrow m>2\)

NV
25 tháng 3 2021

1.

\(\left(-3x-6\right)\left(2x+2\right)\left(x+3\right)\ge0\)

\(\Rightarrow\left[{}\begin{matrix}x\le-3\\-2\le x\le-1\end{matrix}\right.\)

\(\Rightarrow x\in(-\infty;-3]\cup\left[-2;-1\right]\)

2.

Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\)

Ta có: \(d\left(M;d_1\right)=d\left(M;d_2\right)\)

\(\Leftrightarrow\dfrac{\left|3m-6\right|}{\sqrt{3^2+2^2}}=\dfrac{\left|3m+6\right|}{\sqrt{3^2+2^2}}\)

\(\Leftrightarrow\left|3m-6\right|=\left|3m+6\right|\Leftrightarrow\left[{}\begin{matrix}3m-6=3m+6\\3m-6=-3m-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-6=6\left(vô-nghiệm\right)\\m=0\end{matrix}\right.\)

Vậy \(M\left(0;0\right)\)

NV
25 tháng 3 2021

3.

- Với \(m=0\Rightarrow-3< 0\) (thỏa mãn)

- Với \(m\ne0\) BPT đúng với mọi x khi và chỉ khi:

\(\left\{{}\begin{matrix}a=m< 0\\\Delta'=m^2+3m< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\-3< m< 0\end{matrix}\right.\) \(\Rightarrow-3< m< 0\)

Kết hợp lại ta được: \(-3< m\le0\)

4.

\(P=xy+\dfrac{1}{16xy}+\dfrac{15}{16xy}\ge2\sqrt{\dfrac{xy}{16xy}}+\dfrac{15}{4\left(x+y\right)^2}=\dfrac{17}{4}\)

\(P_{min}=\dfrac{17}{4}\) khi \(x=y=\dfrac{1}{2}\)

12 tháng 11 2021

Câu 2: 
Theo đề, ta có hệ phương trình:

\(\left\{{}\begin{matrix}a+b=1\\4a+b=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3a=3\\a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=1-a=2\end{matrix}\right.\)