Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(n^3-n=n\left(n^2-1\right)\)
\(=n\left(n^2-n+n-1\right)=n\left[n\left(n-1\right)+\left(n-1\right)\right]\)
\(=n.\left(n-1\right)\left(n+1\right)\)
Vì \(n^3-n=\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow n^3=\left(n-1\right)n\left(n+1\right)+n\)
Thay vào ta có :
\(1^3+2^3+...+n^3\)\(=0.1.2+1+1.2.3+2+...+\left(n-1\right)n\left(n+1\right)+n\)
\(=1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)+\left(1+2+...+n\right)\)
Đặt \(S=1.2.3+2.3.4+...+\left(n-1\right)n\left(n+1\right)\)
\(\Rightarrow4S=1.2.3.4+2.3.4.\left(5-1\right)+...+\left(n-1\right)n\left(n+1\right)\)\(\left[\left(n+2\right)-\left(n-2\right)\right]\)
\(\Rightarrow4S=\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)
\(\Rightarrow S=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
Đặt \(B=1+2+3+...+n\)
\(\Rightarrow B=\frac{n\left(n+1\right)}{2}=\frac{2.n\left(n+1\right)}{4}\)
\(\Rightarrow1^3+2^3+...+n^3=B+S=\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)+2\left(n+1\right)n}{4}\)
( x + 1 ) + ( x + 2 ) + ( x + 3 ) +... + ( x + 100 ) = 5750
( x + x + x + ... + x ) + ( 1 + 2 + 3 + ... + 100 ) = 5750
( x . 100 ) + ( 1 . 100 ) . 100 : 2 = 5750
( x . 100 ) + 5050 = 5750
x . 100 = 5750 - 5050
x . 100 = 700
x = 700 : 100
x = 7
Vậy x = 7
Đặt \(A=\left|2x-7\right|+\left|2x+1\right|\)
\(A=\left|7-2x\right|+\left|2x+1\right|\ge\left|7-2x+2x+1\right|=8\)
Mà theo đề thì \(A\le8\)
\(\Rightarrow A=8\Leftrightarrow\left(2x-7\right)\left(2x+1\right)\ge0\)
\(\Leftrightarrow-0,5\le x\le3,5\)
Mà x là số nguyên
\(\Rightarrow x\in\left\{0;1;2;3\right\}\)
\(\left(1-\frac{1}{15}\right)\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)...\left(1-\frac{1}{225}\right)\)
\(=\frac{14}{15}.\frac{20}{21}.\frac{27}{28}...\frac{224}{225}\)
\(=\frac{2.7}{3.5}.\frac{5.4}{7.3}.\frac{3.9}{4.7}...\frac{16.14}{15.15}\)
\(=\frac{2}{3}.\frac{14}{15}\) ( rút gọn )
\(=\frac{28}{45}\)