Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Bài 30:
Ta có \(y=x^4-2mx^2\Rightarrow y'=4x^3-4mx\)
Để ĐTHS có 3 điểm cực trị thì \(y'=4x^3-4mx=0\) phải có ba nghiệm phân biệt
\(\Leftrightarrow x(x^2-m)=0\) có ba nghiệm phân biệt. Do đó \(m>0\)
Khi đó, gọi ba điểm cực trị lần lượt là:
\(A(0,0);B(\sqrt{m},-m^2);C(-\sqrt{m},-m^2)\)
Từ đây, ta viết được PTĐT $BC$ là: \(y=-m^2\)
Sử dụng công thức tính khoảng cách từ 1 điểm đến đường thẳng:
\(d(A,BC)=\frac{|m^2|}{\sqrt{1^2+0^2}}=m^2\)
\(BC=\sqrt{(\sqrt{m}--\sqrt{m})^2+(-m^2+m^2)^2}=2\sqrt{m}\)
\(\Rightarrow S_{ABC}=\frac{d(A,BC).BC}{2}=m^2\sqrt{m}<1\). Mà \(m>0\) nên
\(m^2\sqrt{m}<1\Leftrightarrow 0<\sqrt{m^5}<1\Leftrightarrow 0< m<1\).
Đáp án D.
Bài 31:
Đề bài sai rồi nhé, hàm thứ hai phải là \(y=x^3-3x^2-m+2\)
PT hoành độ giao điểm:
\(x^3-3x^2-m+2+mx=0\)
\(\Leftrightarrow (x-1)[x^2-2x+(m-2)]=0\)
PT trên có một nghiệm là $1$. Để hai đths cắt nhau tại ba điểm phân biệt thì PT \(x^2-2x+(m-2)=0(1)\) phải có hai nghiệm pb khác $1$
\(\Rightarrow \left\{\begin{matrix} 1-2-2+m\neq 0\\ \Delta'=3-m>0\end{matrix}\right.\Rightarrow m<3\)
Nếu $x_1,x_2$ là hai nghiệm của $(1)$ thì áp dụng định lý Viete ta có:
\(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-2\end{matrix}\right.\)
Như vậy, độ dài các đoạn $AB,BC,AC$ nằm trong các giá trị:
\(\left\{\begin{matrix} |x_1-1|\sqrt{m^2+1}\\ |x_2-1|\sqrt{m^2+1}\\ |x_1-x_2|\sqrt{m^2+1}\end{matrix}\right.\)
Ta thấy \(x_1+x_2=2\Rightarrow x_1-1=1-x_2\Rightarrow |x_1-1|=|x_2-1|\)
Do đó \(|x_1-1|\sqrt{m^2+1}=|x_2-1|\sqrt{m^2+1}\), tức là luôn tồn tại hai đoạn thẳng nối hai giao điểm có độ dài bằng nhau (thỏa mãn đkđb) , với mọi $m$ nằm trong khoảng xác định, hay \(m<3\)
Đáp án D.
câu 30 y'=0 ta có 3 nghiệm x=0 và x=+-căn(m) vs x=+-căn(m)=>y=-m2 =>A(-căn(m);-m^2).B(căn(m);-m^2)=> kc AB=2 căn(m) tại x=0 y=0 =>O(0;0) vì hàm có 3 cực trị =>tam giác 0AB cân => m^2 là đường cao Soab=(2 căn(m)*m^2)/2 =căn(m)^3<1 gọi căn m là x => x^3-1<0 áp dụng hằng đt => x-1<0 => x<1 =>m<1
Lời giải:
Ta có:
\(y=-x^3+3x^2+5\Rightarrow y'=-3x^2+6x=0\Leftrightarrow \)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Do đó hai điểm cực trị là:\(A(0,5)\) và \(B(2,9)\)
Suy ra \(\left\{\begin{matrix} OA=5\\ OB=\sqrt{85}\\ AB=2\sqrt{5}\end{matrix}\right.\)
Sử dụng công thức Herong: Với \(a,b,c\) là độ dài ba cạnh tam giác, \(p\) là nửa chu vi thì:
\(S=\sqrt{p(p-a)(p-b)(p-c)}\)
Áp dụng vào bài toán:
\(S_{OAB}=5\)
Đáp án B
Bài 18:
Theo định lý Pitago:
\(SA=\sqrt{SB^2-AB^2}=2a\)
Do đó, \(V_{S.ABC}=\frac{1}{3}.SA.S_{ABC}=\frac{1}{3}.2a.\frac{a.5a}{2}=\frac{5a^3}{3}\)
Đáp án D.
Bài 19:
Vì
\(SA\perp (ABCD)\Rightarrow \angle (SB,(ABCD))=\angle (SB,AB)=\angle SBA=60^0\)
Suy ra \(\frac{SA}{AB}=\frac{SA}{a}=\tan SBA=\sqrt{3}\Rightarrow SA=\sqrt{3}a\)
\(\Rightarrow V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}\sqrt{3}a.a.3a=\sqrt{3}a^3\)
Đáp án B
Câu 17:
\(F(x)=\int \sqrt{\ln^2x+1}\frac{\ln x}{x}dx=\int \sqrt{\ln ^2x+1}\ln xd(\ln x)\)
\(\Leftrightarrow F(x)=\frac{1}{2}\int \sqrt{\ln ^2x+1}d(\ln ^2x)\)
Đặt \(\sqrt{\ln^2 x+1}=t\) \(\Rightarrow \ln ^2x=t^2-1\)
\(\Rightarrow F(x)=\frac{1}{2}\int td(t^2-1)=\int t^2dt=\frac{t^3}{3}+c=\frac{\sqrt{(\ln^2x+1)^3}}{3}+c\)
Vì \(F(1)=\frac{1}{3}\Leftrightarrow \frac{1}{3}+c=\frac{1}{3}\Rightarrow c=0\)
\(\Rightarrow F^2(e)=\left(\frac{\sqrt{\ln ^2e+1)^3}}{3}\right)^2=\frac{8}{9}\)
Câu 11)
Đặt \(\sqrt{3x+1}=t\Rightarrow x=\frac{t^2-1}{3}\)
\(\Rightarrow I=\int ^{5}_{1}\frac{dx}{x\sqrt{3x+1}}==\int ^{5}_{1}\frac{d\left ( \frac{t^2-1}{3} \right )}{\frac{t(t^2-1)}{3}}=\int ^{4}_{2}\frac{2tdt}{t(t^2-1)}=\int ^{4}_{2}\frac{2dt}{(t-1)(t+1)}\)
\(=\int ^{4}_{2}\left ( \frac{dt}{t-1}-\frac{dt}{t+1} \right )=\left.\begin{matrix} 4\\ 2\end{matrix}\right|(\ln|t-1|-\ln|t+1|)=2\ln 3-\ln 5\)
\(\Rightarrow a=2,b=-1\Rightarrow a^2+ab+3b^2=5\)
Đáp án C
Câu 20)
Ta có:
\(I=\int ^{x}_{\frac{1}{e}}\frac{\ln t+1}{t}dt=\int ^{x}_{\frac{1}{e}}(\ln t+1)d(\ln t)=\int ^{x}_{\frac{1}{e}}\ln td(\ln t)+\int ^{x}_{\frac{1}{e}}d(\ln t)\)
\(=\left.\begin{matrix} x\\ \frac{1}{e}\end{matrix}\right|\left ( \ln t+\frac{\ln^2t}{2}+c \right )=\left ( \ln x+\frac{\ln^2x}{2} \right )+\frac{1}{2}=18\leftrightarrow \ln x+\frac{\ln ^2x}{2}=\frac{35}{2}\)
\(\Rightarrow\left[\begin{matrix}x=e^{-7}\\x=e^5\end{matrix}\right.\)
Đáp án A.
y=x^3 - 3x^2 - 9x + 1
Y'=3x^2 - 6x - 9
y"=6x -6 ; y"=0
=>x=1; y=-10
=>C