Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét △KNI ⊥ tại K và △MNI ⊥ tại M có:
∠N1 = ∠N2 ( NI là đường phân giác của △MNP )
NI là cạnh chung
⇒ △KNI = △MNI ( cạnh huyền - góc nhọn )
⇒ KI = MI ( 2 cạnh bằng nhau )
b,c) Xin lỗi bạn mình ko biết . mình quên mất kiến thức rồicó gì thì để bạn khác rả lời nhé❗ 3❤❤❤❤
a: Xét ΔABM và ΔICM có
MA=MI
\(\widehat{AMB}=\widehat{IMC}\)
MB=MC
Do đó: ΔABM=ΔICM
b: ΔABM=ΔICM
=>\(\widehat{ABM}=\widehat{ICM}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CI
c: Xét ΔBHM vuông tại H và ΔCKM vuông tại K có
MB=MC
\(\widehat{BMH}=\widehat{CMK}\)
Do đó: ΔBHM=ΔCKM
=>BH=CK
d: BH\(\perp\)AI
CK\(\perp\)AI
Do đó: BH//CK
=>BE//CF
Xét tứ giác BECF có
BE//CF
CE//BF
Do đó: BECF là hình bình hành
=>BC cắt EF tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của EF
=>E,M,F thẳng hàng
Anh bạn à sống đẹp lên
Đấy là bài kiểm tra lên còn cái nịt nhá
a,=>2^x.4=16=>2^x=4=>x=2
b,=>(3x-2)^2=1/4=>3x-2=1/2=>3x=5/2=>x=5/6
a: Xét tứ giác ABCD có
O là trung điểm của AC
O là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
b: Xét ΔAOM và ΔCON có
\(\widehat{AOM}=\widehat{CON}\)
OA=OC
\(\widehat{OAM}=\widehat{OCN}\)
Do đó: ΔAOM=ΔCON
Suy ra: OM=ON
hay O là trung điểm của MN
Xét tứ giác AMCN có
O là trung điểm của AC
O là trung điểm của MN
Do đó: AMCN là hình bình hành
Suy ra: AM//CN
Gọi D là giao điểm BM và CN.
Trên cạnh BC lấy điểm E sao cho \(BE=BN\)
Khi đó \(CE=BC-BE=BN+CM-BE=CM\)
Xét hai tam giác BDE và BDN có:
\(\left\{{}\begin{matrix}BE=BN\\\widehat{DBE}=\widehat{DBN}\left(\text{BM là phân giác}\right)\\BD\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta BDE=\Delta BDN\left(c.g.c\right)\)
\(\Rightarrow\widehat{BDE}=\widehat{BDN}\)
Hoàn toàn tương tự, ta cũng có \(\Delta CDE=\Delta CDM\left(c.g.c\right)\Rightarrow\widehat{CDE}=\widehat{CDM}\)
Mà \(\widehat{BDN}=\widehat{CDM}\) (đối đỉnh) \(\Rightarrow\widehat{BDN}=\widehat{BDE}=\widehat{CDM}=\widehat{CDE}\)
Mà \(\widehat{BDE}+\widehat{CDE}+\widehat{CDM}=180^0\)
\(\Rightarrow3\widehat{BDE}=180^0\Rightarrow\widehat{BDE}=60^0\)
\(\Rightarrow\widehat{CDE}=60^0\)
\(\Rightarrow\widehat{BDC}=\widehat{BDE}+\widehat{CDE}=120^0\)
Theo tính chất tổng 3 góc tổng tam giác:
\(\widehat{BDC}+\widehat{DBC}+\widehat{DCB}=180^0\)
\(\Rightarrow120^0+\dfrac{1}{2}\widehat{B}+\dfrac{1}{2}\widehat{C}=180^0\)
\(\Rightarrow\widehat{B}+\widehat{C}=120^0\)
Do tổng 3 góc trong tam giác ABC bằng 180 độ
\(\Rightarrow\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Rightarrow\widehat{A}+120^0=180^0\)
\(\Rightarrow A=60^0\)