Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
Xét hai tam giác BAC và BHA có:
\(\left\{{}\begin{matrix}\widehat{ABH}\text{ chung}\\\widehat{BAC}=\widehat{BHA}=90^0\end{matrix}\right.\)
\(\Rightarrow\Delta BAC\sim\Delta BHA\left(g.g\right)\)
b.
Áp dụng định lý Pitago cho tam giác vuông ABC:
\(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)
Do \(\Delta BAC\sim\Delta BHA\Rightarrow\dfrac{BC}{AB}=\dfrac{AC}{AH}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}\)
Áp dụng định lý Pitago cho tam giác vuông ABH:
\(BH=\sqrt{AB^2-AH^2}=\dfrac{9}{5}\)
\(CH=BC-BH=\dfrac{16}{5}\)
c.
Do BD là phân giác góc B, áp dụng định lý phân giác cho tam giác ABC:
\(\dfrac{DC}{AD}=\dfrac{BC}{AB}\) (1)
Áp dụng định lý phân giác cho tam giác ABH:
\(\dfrac{AM}{HM}=\dfrac{AB}{BH}\) (2)
Lại có \(\Delta BAC\sim\Delta BHA\Rightarrow\dfrac{BC}{AB}=\dfrac{AB}{BH}\) (3)
(1);(2);(3) \(\Rightarrow\dfrac{DC}{AD}=\dfrac{AM}{HM}\Rightarrow AM.AD=HM.CD\)
Có : x^3-x^2+2x-8
= (x^3-2x^2)+(x^2-2x)+(4x-8)
= (x-2).(x^2+x+4)
Tk mk nha
\(x^2-2x+\left(x-2\right)^2\)
\(=x^2-2x+x^2-4x+4\)
\(=2x^2-6x+4\)
\(=2.\left(x^2-3x+2\right)\)
\(=2.\left[\left(x^2-x\right)-\left(2x-2\right)\right]\)
\(=2.\left[x.\left(x-1\right)-2.\left(x-1\right)\right]\)
\(=2.\left(x-1\right)\left(x-2\right)\)
Gọi K là tđ EB
Xét tg ECB ta có :
+ EK=KB (K tđ EB)
+DC = DB (gt)
=> DK là đường tb tg ECB => EC//DK => ME//DK
Xét tg ADK ta có :
Vì EM//DK
AE = EK (=1/3 AB )
=> AM=MD ( dl1) => dpcm