K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
28 tháng 3 2023

a.

Xét hai tam giác BAC và BHA có:

\(\left\{{}\begin{matrix}\widehat{ABH}\text{ chung}\\\widehat{BAC}=\widehat{BHA}=90^0\end{matrix}\right.\)

\(\Rightarrow\Delta BAC\sim\Delta BHA\left(g.g\right)\)

b.

Áp dụng định lý Pitago cho tam giác vuông ABC:

\(BC^2=AB^2+AC^2\Rightarrow BC=\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}=5\)

Do \(\Delta BAC\sim\Delta BHA\Rightarrow\dfrac{BC}{AB}=\dfrac{AC}{AH}\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{3.4}{5}=\dfrac{12}{5}\)

Áp dụng định lý Pitago cho tam giác vuông ABH:

\(BH=\sqrt{AB^2-AH^2}=\dfrac{9}{5}\)

\(CH=BC-BH=\dfrac{16}{5}\)

c.

Do BD là phân giác góc B, áp dụng định lý phân giác cho tam giác ABC:

\(\dfrac{DC}{AD}=\dfrac{BC}{AB}\) (1)

Áp dụng định lý phân  giác cho tam giác ABH:

\(\dfrac{AM}{HM}=\dfrac{AB}{BH}\) (2)

Lại có \(\Delta BAC\sim\Delta BHA\Rightarrow\dfrac{BC}{AB}=\dfrac{AB}{BH}\) (3)

(1);(2);(3) \(\Rightarrow\dfrac{DC}{AD}=\dfrac{AM}{HM}\Rightarrow AM.AD=HM.CD\)

NV
28 tháng 3 2023

loading...

6 tháng 2 2018

Có : x^3-x^2+2x-8

= (x^3-2x^2)+(x^2-2x)+(4x-8) 

= (x-2).(x^2+x+4)

Tk mk nha

7 tháng 12 2018

\(x^2-2x+\left(x-2\right)^2\)

\(=x^2-2x+x^2-4x+4\)

\(=2x^2-6x+4\)

\(=2.\left(x^2-3x+2\right)\)

\(=2.\left[\left(x^2-x\right)-\left(2x-2\right)\right]\)

\(=2.\left[x.\left(x-1\right)-2.\left(x-1\right)\right]\)

\(=2.\left(x-1\right)\left(x-2\right)\)

7 tháng 12 2018

\(a,x^2-2x+\left(x-2\right)^2\)

\(=x\left(x-2\right)+\left(x-2\right)^2\)

\(=\left(x+x-2\right)\left(x-2\right)\)

\(b,x^2-6xy-16+9y^2\)

\(=\left(x^2-6xy+9y^2\right)-16\)

\(=\left(x+3y\right)^2-4^2\)

\(=\left(x+3y-4\right)\left(x+3y+4\right)\)

8 tháng 8 2018

Gọi K là tđ EB 

Xét tg ECB ta có :

+ EK=KB (K tđ EB)

+DC = DB (gt) 

=> DK là đường tb tg ECB => EC//DK => ME//DK

Xét tg ADK ta có :

Vì EM//DK

AE = EK (=1/3 AB )

=> AM=MD ( dl1) => dpcm