Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c \(\frac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(3x^2-27\right)}=\frac{2\left(x-2\right)\left(x-3\right)}{3\left(x-2\right)\left(x^2-9\right)}\)
\(=\frac{2\left(x-2\right)\left(x-3\right)}{3\left(x-2\right)\left(x-3\right)\left(x+3\right)}=\frac{2}{3\left(x+3\right)}\)
d, \(\frac{x^2+5x+6}{x^2+4x+4}=\frac{\left(x+2\right)\left(x+3\right)}{\left(x+2\right)^2}=\frac{x+3}{x+2}\)
Tương tự với a ; b
x^3+3x^2-7x^2-21x+9x+27=0
x^2(x+3)-7x(x+3)+9(x+3)=0
(x+3)(x^2-7x+9)=0
x = -3 hoặc x^2 - 7x + 9 = 0 (chuyển về pt dạng kx^2 + m)
Bạn chuyển 7x = 2 . x . 7/2 + 49/4 - 49/4
x^3+3x^2-7x^2-21x+9x+27=0
x^2(x+3)-7x(x+3)+9(x+3)=0
(x+3)(x^2-7x+9)=0
x = -3 hoặc x^2 - 7x + 9 = 0 (chuyển về pt dạng kx^2 + m)
\(a,9\left(2x+1\right)=4\left(x-5\right)^2\)
\(4x^2-40x+100=18x+9\)
\(4x^2-58x+91=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{29+3\sqrt{53}}{4}\\x=\frac{29-3\sqrt{53}}{4}\end{cases}}\)
\(b,x^3-4x^2-12x+27=0\)
\(\left(x+3\right)\left(x^2-7x+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2-7x+9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}}\)
\(c,x^3+3x^2-6x-8=0\)
\(\left(x+4\right)\left(x-2\right)\left(x+1\right)=0\)
\(Th1:x+4=0\Leftrightarrow x=-4\)
\(Th2:x-2=0\Leftrightarrow x=2\)
\(Th3:x+1=0\Leftrightarrow x=-1\)
\(a,9.\left(2x+1\right)=4.\left(x-5\right)^2\)
\(< =>4x^2-40x+100=18x+9\)
\(< =>4x^2+58x+91=0\)
\(< =>\orbr{\begin{cases}x=\frac{29-3\sqrt{53}}{4}\\x=\frac{29+3\sqrt{53}}{4}\end{cases}}\)
\(b,x^3-4x^2-12x+27=0\)
\(< =>\left(x+3\right)\left(x^2-7x+9\right)=0\)
\(< =>\orbr{\begin{cases}x+3=0\\x^2-7x+9=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=-3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}\)
a, \(x^3-4x^2-12x+27=0\)
\(\Rightarrow\left(x^3+27\right)-\left(4x^2+12x\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-3x+9-4x\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-7x+9\right)=0\)
Đến đoạn này p tự nghĩ và phân tích tiếp nha, mk chịu rùi!!!
b, \(2x^2+x-6=0\)
\(\Rightarrow2x^2+4x-3x-6=0\)
\(\Rightarrow\left(2x^2+4x\right)-\left(3x+6\right)=0\)
\(\Rightarrow2x\left(x+2\right)-3\left(x+2\right)=0\)
\(\Rightarrow\left(x+2\right)\left(2x-3\right)=0\)
\(\Rightarrow x+2=0\) hoặc \(2x-3=0\)
\(\Rightarrow x=-2\) hoặc \(x=\dfrac{3}{2}\)
Vậy \(x=-2\) ; \(x=\dfrac{3}{2}\)
Chúc pạn hok tốt!!!
b, 2x² - x - 6 = 0
2 * -6 = -12
-4 * 3 = -12
-4 + 3 = -1
2x² - 4x + 3x - 6 = 0 (same as original)
(2x² - 4x) + (3x - 6) = 0
2x(x - 2) + 3(x - 2) = 0
(2x + 3)(x - 2) = 0
2x + 3 = 0
2x = -3
x = -3/2
x - 2 = 0
x = 2
x = -3/2 and x = 2
a) \(x^2-xz-9y^2+3yz\)
\(=\left(x^2-9y^2\right)-\left(xz-3yz\right)\)
\(=\left[x^2-\left(3y\right)^2\right]-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y\right)-z\left(x-3y\right)\)
\(=\left(x-3y\right)\left(x+3y-z\right)\)
b) \(x^3-x^2-5x+125\)
\(=\left(x^3+125\right)-\left(x^2+5x\right)\)
\(=\left(x^3+5^3\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+5^2\right)-x\left(x+5\right)\)
\(=\left(x+5\right)\left(x^2-5x+5^2-x\right)\)
\(=\left(x+5\right)\left(x^2-6x+25\right)\)
c) \(x^3+2x^2-6x-27\)
\(=\left(x^3-27\right)-\left(2x^2-6x\right)\)
\(=\left(x^3-3^3\right)-2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+3^2\right)-2x\left(x-3\right)\)
\(=\left(x-3\right)\left(x^2+3x+3^2-2x\right)\)
\(=\left(x-3\right)\left(x^2+x+9\right)\)
e) \(4x^4+4x^3-x^2-x\)
\(=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(x+1\right)\left(4x^3-x\right)\)
f) \(x^6-x^4-9x^3+9x^2\)
\(=x^4\left(x^2-1\right)-9x^2\left(x-1\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x-1\right)\left[x^4\left(x+1\right)-9x^2\right]\)
\(=\left(x-1\right)\left(x^5+x^4-9x^2\right)\)
(𝑥+3)(𝑥2−7𝑥+9)