K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2023

loading...

a: Xét tứ giác OAMB có

\(\widehat{OAM}+\widehat{OBM}=90^0+90^0=180^0\)

=>OAMB là tứ giác nội tiếp

=>O,A,M,B cùng thuộc một đường tròn

b: Xét (O) có

MA,MB là tiếp tuyến

Do đó: MA=MB

mà OA=OB

nên OM là đường trung trực của AB

=>OM⊥AB(1)

Xét (O) có

ΔABD nội tiếp

AD là đường kính

Do đó:ΔABD vuông tại B

=>AB⊥BD(2)

Từ (1) và (2) suy ra OM//BD

NV
4 tháng 1

d.

Ta có: \(AB=AC\) (t/c hai tiếp tuyến cắt nhau)

\(OB=OC=R\)

\(\Rightarrow OA\) là trung trực BC hay OA vuông góc BC tại I

Xét hai tam giác vuông AIB và ABO có:

\(\left\{{}\begin{matrix}\widehat{AIB}=\widehat{ABO}=90^0\\\widehat{BAI}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta AIB\sim\Delta ABO\left(g.g\right)\)

\(\Rightarrow\dfrac{AI}{AB}=\dfrac{AB}{AO}\Rightarrow AI.AO=AB^2\)

Theo c/m câu c có \(AB^2=AE.AF\)

\(\Rightarrow AI.AO=AE.AF\)

e.

Từ đẳng thức trên ta suy ra: \(\dfrac{AI}{AF}=\dfrac{AE}{AO}\)

Xét hai tam giác AIE và AFO có:

\(\left\{{}\begin{matrix}\dfrac{AI}{AF}=\dfrac{AE}{AO}\left(cmt\right)\\\widehat{OAF}\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta AIE\sim\Delta AFO\left(c.g.c\right)\)

\(\Rightarrow\widehat{AFO}=\widehat{AIE}\)

Mà \(\widehat{AIE}+\widehat{OIE}=180^0\) (kề bù)

\(\Rightarrow\widehat{AFO}+\widehat{OIE}=180^0\)

\(\Rightarrow\) Tứ giác FOIE nội tiếp

NV
4 tháng 1

a.

Do AB là tiếp tuyến của (O) \(\Rightarrow AB\perp OB\Rightarrow\widehat{ABO}=90^0\)

\(\Rightarrow\) 3 điểm A, B, O thuộc đường tròn đường kính OA (1)

Tương tự AC là tiếp tuyến của (O) nên 3 điểm A, C, O thuộc đường tròn đường kính OA

\(\Rightarrow\) 4 điểm A, B, C, O thuộc đường tròn đường kính OA hay tứ giác ABOC nội tiếp

b.

Do M là trung điểm EF \(\Rightarrow OM\perp EF\Rightarrow\widehat{OMA}=90^0\)

\(\Rightarrow\) 3 điểm A, M, O thuộc đường tròn đường kính OA (2)

(1);(2) \(\Rightarrow\) 4 điểm A, B, M, O thuộc đường tròn đường kính OA

Hay tứ giác ABMO nội tiếp

c.

Xét hai tam giác ABE và AFB có:

\(\left\{{}\begin{matrix}\widehat{EAB}\text{ chung}\\\widehat{ABE}=\widehat{AFB}\left(\text{cùng chắn BE}\right)\end{matrix}\right.\)  \(\Rightarrow\Delta ABE\sim\Delta AFB\left(g.g\right)\)

\(\Rightarrow\dfrac{AB}{AF}=\dfrac{AE}{AB}\) \(\Rightarrow AB^2=AE.AF\)

15 tháng 11 2015

Tam giác OAB và tam giác O'AC cân tại O và O'

=> góc OBA =OAB

 => O'AC =góc O'CA

Mà OAB = O'AC đối đỉnh

=> OBA= O'CA mà 2 góc này ở vị trí đồng vị => OB//O'C

b) OBx - OBA = O'Cy - O'CA 

=> ABx =ACy mà 2 góc ở Vị trí SLT => Bx //Cy

15 tháng 11 2015

Bạn tự vẽ hình nhé.

a) Tam giác OAB cân tại O => góc OBA = OAB

 Tam giác O'AC cân tại O' =>góc O'AC =O'CA mà OAB =O'AC  dối đỉnh

=> góc OBA = O'CA  mà 2 góc này là SLT => OB//O'C

b) => góc OBx - OBA = O'Cy - O'CA

=> ABx =ACy mà 2 góc này ở vị trí SLT => Bx //Cy

24 tháng 9 2021

dễ nhưng ko biết

banh

24 tháng 9 2021

vâng cảm ơn