K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
7 tháng 8 2021

A B C D

Ta có : 

\(\hept{\begin{cases}AC^2=AD^2+DC^2\\BD^2=AD^2+AB^2\end{cases}}\) vì \(CD>AB\Rightarrow AC>BD\)

b. ta có \(AC^2-BD^2=\left(AD^2+DC^2\right)-\left(AD^2+AB^2\right)=CD^2-AB^2\)

13 tháng 4 2022

Giusp mình với mọi người ơi!!!

 

9 tháng 10 2021

Bài 1:

a) \(=\dfrac{\sqrt{5}.\sqrt{7}}{5}=\dfrac{\sqrt{35}}{5}\)

b) \(=\dfrac{\left|y\right|}{\sqrt{3}}=\dfrac{\sqrt{3}y}{3}\)

c) \(=\dfrac{\sqrt{2}}{\sqrt{t}}=\dfrac{\sqrt{2t}}{t}\)

d) \(=\sqrt{\dfrac{7p^2-3p^2}{7}}=\sqrt{\dfrac{4p^2}{7}}=\dfrac{2\left|p\right|}{\sqrt{7}}=\dfrac{-2\sqrt{7}p}{7}\)

Bài 2:

a) \(=\dfrac{\sqrt{21}-\sqrt{15}}{3}\)

b) \(=\dfrac{10\left(4+3\sqrt{2}\right)}{16-18}=-20-15\sqrt{2}\)

c) \(=\dfrac{\left(3\sqrt{10}-5\right)\left(6+\sqrt{10}\right)}{36-10}=\dfrac{18\sqrt{10}+30-30-5\sqrt{10}}{26}=\dfrac{13\sqrt{10}}{26}=\dfrac{\sqrt{10}}{2}\)

 

9 tháng 10 2021

Còn câu d bài 2 thì sao ạ??

a: Áp dụng định lí Pytago vào ΔBAC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=10^2+15^2=325\)

hay \(BC=5\sqrt{13}\left(cm\right)\)

Xét ΔBAC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{15}{5\sqrt{13}}=\dfrac{3}{\sqrt{13}}\)

\(\Leftrightarrow\widehat{B}\simeq56^0\)

b: Xét ΔBAC có 

BI là đường phân giác ứng với cạnh AC

nên \(\dfrac{AI}{AB}=\dfrac{CI}{BC}\)

hay \(\dfrac{AI}{10}=\dfrac{CI}{5\sqrt{13}}\)

mà AI+CI=15cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AI}{10}=\dfrac{CI}{5\sqrt{13}}=\dfrac{AI+CI}{10+5\sqrt{13}}=\dfrac{15}{10+5\sqrt{13}}=\dfrac{-2+\sqrt{13}}{3}\)

Do đó: \(AI=\dfrac{-20+10\sqrt{13}}{3}\left(cm\right)\)

27 tháng 8 2021

em em cảm cảm ơn anh nhiều lắm ạ

 

14 tháng 6 2021

\(A=\dfrac{4x+2\sqrt{x}+2}{2\sqrt{x}+1}=\dfrac{2\sqrt{x}\left(2\sqrt{x}+1\right)+2}{2\sqrt{x}+1}=2\sqrt{x}+\dfrac{2}{2\sqrt{x}+1}\)

\(=2\sqrt{x}+1+\dfrac{2}{2\sqrt{x}+1}-1\ge2\sqrt{\left(2\sqrt{x}+1\right)\cdot\dfrac{2}{2\sqrt{x}+1}}-1=2\sqrt{2}-1\)

=> A \(\ge2\sqrt{2}-1\)

Dấu "=" xảy ra <=> \(2\sqrt{x}+1=\dfrac{2}{2\sqrt{x}+1}\)

<=> \(\left(2\sqrt{x}+1\right)^2=2\) <=> \(\left[{}\begin{matrix}2\sqrt{x}+1=2\\2\sqrt{x}+1=-2\left(loại\right)\end{matrix}\right.\)

<=> \(\sqrt{x}=\dfrac{1}{2}\) <=> \(x=\dfrac{1}{4}\)(tm)

Vậy minA = \(2\sqrt{2}-1\) khi x = 1/4

28 tháng 10 2021

\(BC=\sqrt{8^2+5^2}=\sqrt{89}\approx9,4\left(cm\right)\)

\(x^2+x^4-8^2+16\)

\(=x^{2+4}-8^2+4^2\)

\(=x^6-64+16\)

\(=x^2-48\)

\(=\left(x-\sqrt{48}\right)\left(x+\sqrt{48}\right)\)

25 tháng 5 2021

`A=1/(x+sqrtx)+(2sqrtx)/(x-1)-1/(x-sqrtx)`

`=(sqrtx-1+2x-sqrtx-1)/(sqrtx(x-1))`

`=(2x-2)/(sqrtx(x-1))`

`=2/sqrtx`

`b)A=1`

`<=>2/sqrtx=1`

`<=>sqrtx=2`

`<=>x=4(tm)`