Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-2x-3=-\dfrac{1}{2}x+3\\y=-2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{3}{2}x=6\\y=-2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=8-3=5\end{matrix}\right.\)
Bài `13`
\(a,\sqrt{27}+\sqrt{48}-\sqrt{108}-\sqrt{12}\\ =\sqrt{9\cdot3}+\sqrt{16\cdot3}-\sqrt{36\cdot3}-\sqrt{4\cdot3}\\ =3\sqrt{3}+4\sqrt{3}-6\sqrt{3}-2\sqrt{3}\\ =\left(3+4-6-2\right)\sqrt{3}\\ =-\sqrt{3}\\ b,\left(\sqrt{28}+\sqrt{12}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{84}\\ =\left(\sqrt{4\cdot7}+\sqrt{4\cdot3}-\sqrt{7}\right)\cdot\sqrt{7}+\sqrt{4\cdot21}\\ =\left(2\sqrt{7}+2\sqrt{3}-\sqrt{7}\right)\cdot\sqrt{7}+2\sqrt{21}\\ =2\cdot7+2\sqrt{21}-7+2\sqrt{21}\\ =14+2\sqrt{21}-7+2\sqrt{21}\\ =7+4\sqrt{21}\)
để em viết ra vậy ạ
cho tam giac mnp vuông tại m (mn>mp) có đường cao mk
a) biết mn=20cm, mp=15cm, tính mk và góc mnp (góc làm tròn đến đơn vị phút).
b) vẽ trung tuyến me của tam giác mnp. từ p vẽ đường thẳng vuông góc với me cắt mn tại d. cm tam giác mnp đồng dạng với tam giác mpd, từ đó suy ra mn.md=np.pk
Ta sẽ chứng minh bằng biến đổi tương đương như sau :
Ta có : \(\sqrt{a+b}< \sqrt{a}+\sqrt{b}\left(1\right)\Leftrightarrow\left(\sqrt{a+b}\right)^2< \left(\sqrt{a}+\sqrt{b}\right)^2\Leftrightarrow a+b< a+b+2\sqrt{ab}\)
\(\Leftrightarrow2\sqrt{ab}>0\Leftrightarrow\sqrt{ab}>0\) (luôn đúng)
Vì bất đẳng thức cuối luôn đúng nên bất đẳng thức (1) được chứng minh.
b) Gọi (d3): y=ax+b
Vì (d3)//(d1) nên \(a=-\dfrac{2}{3}\)
Vậy: (d3): \(y=\dfrac{-2}{3}x+b\)
Thay x=6 vào (d2), ta được:
\(y=-2\cdot6+4=-12+4=-8\)
Thay x=6 và y=-8 vào (d3), ta được:
\(\dfrac{-2}{3}\cdot6+b=-8\)
\(\Leftrightarrow b=-4\)
Vậy: (d3): \(y=\dfrac{-2}{3}x-4\)
Gọi tg đó là ABC vuông tại A và \(\widehat{B}=60^0;BC=8\)
Ta có \(AC=\sin\widehat{B}\cdot BC=\dfrac{\sqrt{3}}{2}\cdot8=4\sqrt{3}\)
\(AB=\cos\widehat{B}\cdot BC=\dfrac{1}{2}\cdot8=4\)
Vậy ...