Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Ta có: \(3n^3+10n^2-5⋮3n+1\)
\(\Leftrightarrow3n^3+n^2+9n^2+3n-3n-1-4⋮3n+1\)
\(\Leftrightarrow3n+1\in\left\{1;-1;2;-2;4;-4\right\}\)
\(\Leftrightarrow3n\in\left\{0;-3;3\right\}\)
hay \(n\in\left\{0;-1;1\right\}\)
Bài 2:
a: \(x^2-6x-y^2-4y+5\)
\(=x^2-6x+9-\left(y^2+4y+4\right)\)
\(=\left(x-3\right)^2-\left(y+2\right)^2\)
b: \(4a^2-12a-b^2+2b+8\)
\(=4a^2-12a+9-\left(b^2-2b+1\right)\)
\(=\left(2a-3\right)^2-\left(b-1\right)^2\)
c: \(\left(x+y-3\right)\left(x+y+3\right)\)
\(=\left(x+y\right)^2-3^2\)
d: \(\left(3z+x+2y\right)\left(2y-x+3z\right)\)
\(=\left(2y+3z\right)^2-x^2\)
Xét △DEC và △BAC có
góc D chung
góc CDE= góc CBA (=90)
Vậy △DEC đồng dạng △BAC (g_g)
=> \(\frac{CD}{BC}=\frac{EC}{CA}\Rightarrow\frac{CD}{EC}=\frac{BC}{CA}\)
Xét △EAC và △DBC có
góc C chung
\(\frac{CD}{EC}=\frac{BC}{CA}\)(cmt)
Vậy △EAC đồng dạng △BDC (c_g_c)
=> góc CEA = góc CDB
Ta chứng minh được tam giác DHB vuông cân (góc H = 90 ,DH=HB)
=>gócHDB=45 hay là là góc BDA =45 (nó cùng là 1 góc nhưng do cách gọi tên thôi)
Ta có
\(\hept{\begin{cases}gocCEA+gocAEB=180^o\\gocCDB+gocBDA=180^0\end{cases}}\)
Mà góc CEA = góc CDB
=> góc AEB=góc BDA
Mà góc BDA=45
=> góc AEB=45
Xét tam giác EBA có
góc E=90
góc EBA=45
=>góc DAB =45
=> tam giác ABE vuông cân tại E
=> BA=BE
T I C K nha
____________________Chúc bạn học tốt ______________________
d) \(2x^3+3x^2+3x+1=2x^3+x^2+2x^2+x+2x+1\)
\(=x^2\left(2x+1\right)+x\left(2x+1\right)+\left(2x+1\right)=\left(2x+1\right)\left(x^2+x+1\right)\)
e) \(2x^3-5x^2+5x-3=2x^3-3x^2-2x^2+3x+2x-3\)
\(=x^2\left(2x-3\right)-x\left(2x-3\right)+\left(2x-3\right)=\left(2x-3\right)\left(x^2-x+1\right)\)
b: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{DAE}=90^0\)
Do đó: ADME là hình chữ nhật
Mình cần phần d,e ạ