Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) \(\frac{x-y}{z-y}=-10\Leftrightarrow x-y=10\left(y-z\right)\)
\(\Leftrightarrow x-y=10y-10z\)
\(\Leftrightarrow x=11y-10z\)
Thay x=11y-10z vào biểu thức \(\frac{x-z}{y-z}\), ta có:
\(\frac{11y-10z-z}{y-z}=\frac{11y-11z}{y-z}=\frac{11\left(y-z\right)}{y-z}=11\)
Chá quá, có ghi nhìn không rõ đề
2) \(2x^2=9x-4\)
\(\Leftrightarrow2x^2-9x+4=0\)
\(\Leftrightarrow2x^2-8x-x+4=0\)
\(\Leftrightarrow2x\left(x-4\right)-1\left(x-4\right)\)
\(\Leftrightarrow\left(2x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow2x-1=0\) hoặc x-4=0
1) 2x-1=0<=>x=1/2
2)x-4=0<=>x=4(Loại)
=> x=1/2
Bài 2 :
a ) \(25-20x+4x^2=0\)
\(\Leftrightarrow\left(5-2x\right)^2=0\)
\(\Leftrightarrow5-2x=0\Rightarrow x=\dfrac{5}{2}\)
Vậy \(x=\dfrac{5}{2}\)
a,\(\left(-2x^2+3x\right)\left(x^2-x+3\right)\\ \Leftrightarrow-2x^4+2x^3-6x^2+3x^3-3x^2+9x\\ \Leftrightarrow-2x^4+5x^3-3x^2+3x\)
\(b,x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9+6\right)+6\left(x+1\right)^2=15\\ \Leftrightarrow x\left(x^2-4\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=15\\ \Leftrightarrow x^3-4x-x^3+27+6x^2+12x+6=15\\ \Leftrightarrow6x^2+8x+18=0\\ \Leftrightarrow6\left(x^2+\dfrac{4}{3}x+3\right)=0\\ \Leftrightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}=0\)
Với mọi x thì \(\left(x+\dfrac{2}{3}\right)^2\ge0\Rightarrow\left(x+\dfrac{2}{3}\right)^2+\dfrac{23}{9}>0\)
Do đó ko tìm đc giá trị nào của x thỏa mãn đề bài
Vậy..
Đề số 3.
1.
a,\(4x\left(5x^2-2x+3\right)\)
\(=20x^3-8x^2+12x\)
b.\(\left(x-2\right)\left(x^2-3x+5\right)\)
\(=x^3-3x^2+5x-2x^2+6x-10\)
\(=x^3-5x^2+11x-10\)
c,\(\left(10x^4-5x^3+3x^2\right):5x^2\)
\(=2x^2-x+\dfrac{3}{5}\)
d,\(\left(x^2-12xy+36y^2\right):\left(x-6y\right)\)
\(=\left(x-6y\right)^2:\left(x-6y\right)\)
\(=x-6y\)
2.
a,\(x^2+5x+5xy+25y\)
\(=\left(x^2+5x\right)+\left(5xy+25y\right)\)
\(=x\left(x+5\right)+5y\left(x+5\right)\)
\(=\left(x+5y\right)\left(x+5\right)\)
b,\(x^2-y^2+14x+49\)
\(=\left(x^2+14x+49\right)-y^2\)
\(=\left(x+7\right)^2-y^2\)
\(=\left(x+7-y\right)\left(x+7+y\right)\)
c,\(x^2-24x-25\)
\(=x^2+25x-x-25\)
\(=\left(x^2-x\right)+\left(25x-25\right)\)
\(=x\left(x-1\right)+25\left(x-1\right)\)
\(=\left(x+25\right)\left(x-1\right)\)
3.
a,\(5x\left(x-3\right)-x+3=0\)
\(5x\left(x-3\right)-\left(x-3\right)=0\)
\(\left(5x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}5x=1\\x=3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=3\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{5}\) hoặc \(x=3\)
b.\(3x\left(x-5\right)-\left(x-1\right)\left(2+3x\right)=30\)
\(3x^2-15x-\left(2x+3x^2-2-3x\right)=30\)
\(3x^2-15x-2x-3x^2+2+3x=30\)
\(-14x+2=30\)
\(-14x=28\)
\(x=-2\)
c,\(\left(x+2\right)\left(x+3\right)-\left(x-2\right)\left(x+5\right)=0\)
\(x^2+3x+2x+6-\left(x^2+5x-2x-10\right)=0\)
\(x^2+5x+6-x^2-5x+2x+10=0\)
\(2x+16=0\)
\(2x=-16\)
\(x=-8\)
Mình học chật hình không giúp bạn được.Xin lỗi!
b)x3-2x2-4xy2+x
=x(x2-2x-4y2+1)
=x[(x2-2x+1)-4y2]
=x[(x-1)2-4y2]
=x(x-1-2y)(x-1+2y)
c) (x+2)(x+3)(x+4)(x+5)-8
=[(x+2)(x+5)][(x+3)(x+4)]-8
=(x2+5x+2x+10)(x2+4x+3x+12)-8
=(x2+7x+10)(x2+7x+12)-8
đặt x2+7x+10 =a ta có
a(a+2)-8
=a2+2a-8
=a2+4a-2a-8
=(a2+4a)-(2a+8)
=a(a+4)-2(a+4)
=(a+4)(a-2)
thay a=x2+7x+10 ta đc
(x2+7x+10+4)(x2+7x+10-2)
=(x2+7x+14)(x2+7x+8)
bài 2 x3-x2y+3x-3y
=(x3-x2y)+(3x-3y)
=x2(x-y)+3(x-y)
=(x-y)(x2+3)
đề 1 bài 4
xét tam gics ABC và tam giác HBA có
góc B chung
góc BAC = góc BHA (=90 độ)
=> tam giác ABC đồng dạng vs tam giác HBA (g.g)
=> AB/HB=BC/AB=> AB^2=HB *BC
áp dụng đl py ta go trog tam giác vuông ABC có
BC^2 = AB^2 +AC^2=6^2+8^2=100
=> BC =\(\sqrt{100}\)=10 cm
ta có tam giác ABC đồng dạng vs tam giác HBA (cm câu a )
=> AC/AH=BC/BA=>AH=8*6/10=4.8CM
=>AB/BH=AC/AH=> BH=6*4.8/8=3,6cm
=>HC =BC-BH=10-3,6=6,4cm
dề 1 bài 1
5x+12=3x -14
<=>5x-3x=-14-12
<=>2x=-26
<=> x=-12
vạy S={-12}
(4x-2)*(3x+4)=0
<=>4x-2=0<=>x=1/2
<=>3x+4=0<=>x=-4/3
vậy S={1/2;-4/3}
đkxđ : x\(\ne2;x\ne-3\)
\(\dfrac{4}{x-2}+\dfrac{1}{x+3}=0\)
<=> 4(x+3)/(x-2)(x+3)+1(x-2)/(x-2)(x+3)
=> 4x+12+x-2=0
<=>5x=-10
<=>x=-2 (nhận)
vậy S={-2}
a<=1 => a^2 <=1 => a^2 -1<=0
tương tự : b^2 -1 <=0 ; c^2 -1<=0
=> (a^2 - 1)(b^2 - 1)(c^2 -1) <=0
=> a^2b^2c^2 + a^2 +b^2 +c^2 -1 - a^2b^2 - b^2c^2 - c^2a^2 <=0
=> a^2 + b^2 + c^2 <= 1 + a^2b^2 + b^2c^2 + c^2a^2 - a^2b^2c^2
ta có:
b-1 <=0 => a^2b(b- 1) <= 0 => a^2b^2 <= a^2b
tương tự : b^2c^2 <= b^2c ; c^2a^2 <= c^2a
mà a^2b^2c^2 >=0 => -a^2b^2c^2 <=0
=> 1 + a^2b^2 + b^2c^2 + c^2a^2 - a^2b^2c^2 <= 1+(a^2)b+(b^2)c+(c^2)a - 0
=1+(a^2)b+(b^2)c+(c^2)a
=> đpcm
Bài 4:
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge2\sqrt{\dfrac{a^2}{b^2}\cdot\dfrac{b^2}{a^2}}=2\)
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}\cdot\dfrac{b}{a}}=2\Rightarrow3\left(\dfrac{a}{b}+\dfrac{b}{c}\right)\ge6\)
\(\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-3\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge2-6=-4\)
\(\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-3\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+4\ge-4+4=0\) (đúng)
Hình vẽ không chính xác lắm thông cảm
a) Vì OM song song với AB nên \(\dfrac{OM}{AB}=\dfrac{OD}{BD}\)
Vì OM song song với CD nên \(\dfrac{OM}{CD}=\dfrac{OA}{AC}\)
Vì AB song song với CD nên \(\dfrac{OA}{AC}=\dfrac{OB}{BD}\) nên \(\dfrac{OM}{CD}=\dfrac{OB}{BD}\)
Do đó \(\dfrac{OM}{AB}+\dfrac{OM}{CD}=\dfrac{OD}{BD}+\dfrac{OA}{AC}=\dfrac{OD}{BD}+\dfrac{OB}{BD}=1\)
Hay \(OM\left(\dfrac{1}{AB}+\dfrac{1}{CD}\right)=1\) suy ra \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{1}{OM}\)
Lại có ON song song với CD nên \(\dfrac{ON}{CD}=\dfrac{OB}{BD}\) mà \(\dfrac{OB}{BD}=\dfrac{OM}{CD}\) nên \(\dfrac{ON}{CD}=\dfrac{OM}{CD}\) hay OM = ON = \(\dfrac{1}{2}\)MN
Suy ra \(\dfrac{1}{AB}+\dfrac{1}{CD}=\dfrac{1}{OM}=\dfrac{1}{\dfrac{1}{2}MN}=\dfrac{2}{MN}\)
b) Dễ chứng minh SADC = SBDC
Mà SADC = SAOD+SOCD và SBDC = SBOC+SOCD
Suy ra SAOD = SBOC
Lại có \(\dfrac{S_{AOD}}{S_{AOB}}=\dfrac{OD}{OB}\) và \(\dfrac{S_{OCD}}{S_{BOC}}=\dfrac{OD}{OB}\)
Nên \(\dfrac{S_{AOD}}{S_{AOB}}=\dfrac{S_{OCD}}{S_{BOC}}\) \(\Leftrightarrow\) \(S_{AOD}.S_{BOC}=S_{AOB}.S_{OCD}\)
Hay \(S_{AOD}=S_{BOC}=\sqrt{S_{AOB}.S_{OCD}}=\sqrt{a^2.b^2}=ab\)
Khi đó \(S_{ABCD}=S_{AOD}+S_{BOC}+S_{AOB}+S_{OCD}=ab+ab+a^2+b^2=a^2+b^2+2ab=\left(a+b\right)^2\)
A B C D O M N