K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 3 2022

a.

\(\Delta=\left(-5\right)^2-4.3.2=25-24=1>0\)

\(\Rightarrow\) Phương trình có 2 nghiệm pb

b.

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{5}{3}\\x_1x_2=\dfrac{2}{3}\end{matrix}\right.\)

\(4A=x_1^2+x_2^2-x_1x_2=\left(x_1^2+x_2^2+2x_1x_2\right)-3x_1x_2\)

\(4A=\left(x_1+x_2\right)^2-3x_1x_2\)

\(4A=\left(\dfrac{5}{3}\right)^2-3.\left(\dfrac{2}{3}\right)=\dfrac{7}{9}\)

\(\Rightarrow A=\dfrac{7}{36}\)

AH
Akai Haruma
Giáo viên
31 tháng 1 2023

Lời giải:
Áp dụng định lý Viet đối với pt $x^2+3x-7=0$ ta có:
$x_1+x_2=-3$

$x_1x_2=-7$

Khi đó:
$\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_2-1+x_1-1}{(x_1-1)(x_2-1)}$

$=\frac{(x_1+x_2)-2}{x_1x_2-(x_1+x_2)+1}=\frac{-3-2}{-7-(-3)+1}=\frac{5}{3}$

$\frac{1}{x_1-1}.\frac{1}{x_2-1}=\frac{1}{(x_1-1)(x_2-1)}=\frac{1}{x_1x_2-(x_1+x_2)+1}=\frac{1}{-7-(-3)+1}=\frac{-1}{3}$

Khi đó áp dụng định lý Viet đảo, $\frac{1}{x_1-1}, \frac{1}{x_2-1}$ là nghiệm của pt:

$x^2-\frac{5}{3}x-\frac{1}{3}=0$

AH
Akai Haruma
Giáo viên
31 tháng 1 2023

Lời giải:
Áp dụng định lý Viet đối với pt $x^2+3x-7=0$ ta có:
$x_1+x_2=-3$

$x_1x_2=-7$

Khi đó:
$\frac{1}{x_1-1}+\frac{1}{x_2-1}=\frac{x_2-1+x_1-1}{(x_1-1)(x_2-1)}$

$=\frac{(x_1+x_2)-2}{x_1x_2-(x_1+x_2)+1}=\frac{-3-2}{-7-(-3)+1}=\frac{5}{3}$

$\frac{1}{x_1-1}.\frac{1}{x_2-1}=\frac{1}{(x_1-1)(x_2-1)}=\frac{1}{x_1x_2-(x_1+x_2)+1}=\frac{1}{-7-(-3)+1}=\frac{-1}{3}$

Khi đó áp dụng định lý Viet đảo, $\frac{1}{x_1-1}, \frac{1}{x_2-1}$ là nghiệm của pt:

$x^2-\frac{5}{3}x-\frac{1}{3}=0$

10 tháng 11 2021

Kẻ AH⊥BC

ta có: \(VP=AB^2+BC^2-2.AB.BC.cosB=AB^2+BC^2-2.AB.BC.\dfrac{BH}{AB}=AB^2+BC^2-2.BH.BC=AB^2-BH^2+BC^2-2.BH.BC+BH^2=AH^2+\left(BC-BH\right)^2=AH^2+CH^2=AC^2=VT\)

11 tháng 12 2023

Bài 7:

(d): \(y=2\left(m+1\right)x-m-1\)

\(\Leftrightarrow y=2mx+2x-m-1\)

=>y=m(2x-1)+2x-1

Tọa độ điểm cố định mà (d) luôn đi qua là:

\(\left\{{}\begin{matrix}2x-1=0\\y=2x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=0\end{matrix}\right.\)

Bài 8:

y=mx+1

Tọa độ điểm cố định mà (d) luôn đi qua là:

\(\left\{{}\begin{matrix}x=0\\y=m\cdot x+1=m\cdot0+1=1\end{matrix}\right.\)

Bài 9:

Tọa độ giao điểm của (d1) và (d2) là:

\(\left\{{}\begin{matrix}5x-3=x+1\\y=x+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x=4\\y=x+1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=1\\y=1+1=2\end{matrix}\right.\)

Thay x=1 và y=2 vào (d3), ta được:

1*m+4=2

=>m+4=2

=>m=-2

Để M nguyên thì \(5⋮\sqrt{a}+1\)

\(\Leftrightarrow\sqrt{a}+1\in\left\{1;5\right\}\)

\(\Leftrightarrow\sqrt{a}\in\left\{0;4\right\}\)

hay \(a\in\left\{0;16\right\}\)

Tham khảo:  Cho tứ giác ABCD có góc C + góc D = 90 độ. Gọi M, N, P, Q theo thứ tự là trung điểm của AB, BD, DC, CA. Chứng minh 4 điểm M, N, P, Q cùng nằm trên 1 đường tròn - Toán học Lớp 9 - Bài tập Toán học Lớp 9 - Giải bài tập Toán học Lớp 9 | Lazi.vn - Cộng đồng Tri thức & Giáo dục

Xét ΔABD có 

M là trung điểm của AB

S là trung điểm của AD

Do đó: MS là đường trung bình của ΔBAD

Suy ra: MS//BD và \(MS=\dfrac{BD}{2}\left(1\right)\)

mà BD\(\perp\)AC

nên MS\(\perp\)AC

Xét ΔABC có

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC

và AC\(\perp\)MS

nên MN\(\perp\)MS

Xét ΔBCD có 

N là trung điểm của BC

R là trung điểm của CD

Do đó: RN là đường trung bình của ΔBCD

Suy ra: RN//BD và \(RN=\dfrac{BD}{2}\left(2\right)\)

Từ \(\left(1\right),\left(2\right)\) suy ra MS//NR và MS=NR

Xét tứ giác MSRN có 

MS//NR

MS=NR

Do đó: MSRN là hình bình hành

mà \(\widehat{SMN}=90^0\)

nên MSRN là hình chữ nhật

Suy ra: M,S,R,N cùng thuộc 1 đường tròn

24 tháng 8 2021

Em cảm ơn ạ

Để A là số nguyên thì \(-5⋮2\sqrt{x}+1\)

\(\Leftrightarrow2\sqrt{x}+1\in\left\{1;5\right\}\)

\(\Leftrightarrow2\sqrt{x}\in\left\{0;4\right\}\)

hay \(x\in\left\{0;4\right\}\)

Để A là số nguyên thì \(\sqrt{x}-1⋮2\sqrt{x}+3\)

\(\Leftrightarrow2\sqrt{x}+3-5⋮2\sqrt{x}+3\)

\(\Leftrightarrow2\sqrt{x}+3=5\)

\(\Leftrightarrow\sqrt{x}=1\)

hay x=1

26 tháng 8 2021

\(A=\dfrac{x-7}{\sqrt{x}-2}-1\) để A nguyên thì \(\dfrac{x-7}{\sqrt{x}-2}nguyên\) 

đặt \(\dfrac{x-7}{\sqrt{x}-2}=k\)(k nguyên)

tìm x theo k là ok

 

Để A là số nguyên thì \(x-\sqrt{x}-5⋮\sqrt{x}-2\)

\(\Leftrightarrow x-2\sqrt{x}+\sqrt{x}-2-3⋮\sqrt{x}-2\)

\(\Leftrightarrow-3⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{-1;1;3\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{1;3;5\right\}\)

hay \(x\in\left\{1;9;25\right\}\)