Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3.
Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(1;+\infty\right)\)
B đúng
4.
Từ BBT ta thấy hàm đồng biến trên các khoảng \(\left(-\infty;-1\right)\) và \(\left(0;1\right)\)
A đúng
1.
B sai (thiếu điều kiện \(f'\left(x\right)=0\) tại hữu hạn điểm)
\(I=\int\limits^1_0\left(x^2+x-2\right)dx=\left(\dfrac{1}{3}x^3+\dfrac{1}{2}x^2-2x\right)|^1_0=-\dfrac{7}{6}\)
Đường thẳng đi qua 2 cực trị của hàm \(y=ax^3+bx^2+cx+d\) có dạng:
\(y=\dfrac{2}{3}\left(c-\dfrac{b^2}{3a}\right)x+d-\dfrac{bc}{9a}\)
Áp dụng ta được pt đường thẳng qua 2 cực trị là: \(y=-2x+1\)
\(\Rightarrow-2\left(2m-1\right)=-1\Rightarrow m=\dfrac{3}{4}\)
\(g'\left(x\right)=f'\left(x\right)-\left(m-1\right)=0\Rightarrow x^4-4x^2+1=m\)
Hàm có 4 cực trị khi y=m cắt \(y=x^4-4x^2+1\) tại 4 điểm pb
1 bài toán cơ bản. Vẽ BBT là xong.
Mà có nhầm đâu ko nhỉ? Cảm giác bài này quá dễ so với bài vừa làm, kiểu 2 thế giới ấy
25. Hàm \(y=ax^3+bx^2+cx+d\) có pt đường thẳng qua 2 cực trị dạng:
\(y=\left(\dfrac{2c}{3}-\dfrac{2b^2}{9a}\right)x+d-\dfrac{bc}{9a}\)
Ở bài này a=1;b=0, c=-3, d=1 thay vào công thức trên ta được:
\(y=-2x+1\) hay \(y=1-2x\)
30.
\(\left\{{}\begin{matrix}y'=3x^2-2mx+2m-3\\y''=6x-2m\end{matrix}\right.\)
Hàm đạt cực đại tại x=1 khi: \(\left\{{}\begin{matrix}y'\left(1\right)=0\\y''\left(1\right)< 0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}3-2m+2m-3=0\\6-2m< 0\end{matrix}\right.\) \(\Rightarrow m>3\)