K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
LH
0
LA
9 tháng 1 2024
Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:
p=O'A'OA=22=1�=�'�'��=22=1;
q=O'B'OB=13�=�'�'��=13;
r=O'C'OC=46=23�=�'�'��=46=23.
QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023
a)
Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng lớn (dần tới \( + \infty \)).
b)
Giá trị \(f\left( x \right)\) dần về 0 khi \(x\) càng bé (dần tới \( - \infty \)).
TN
1
1: \(y=2x+cosx\)
=>\(y'=2-sinx\)
=>\(y''=2'-\left(sinx\right)'=-cosx\)
2: \(y=sin^3x\)
=>\(y'=3\cdot sin^2x\cdot\left(sinx\right)'=3\cdot sin^2x\cdot cosx\)
=>\(y''=3\cdot\left(sin^2x\cdot cosx\right)'\)
=>\(y''=3\left[\left(sin^2x\right)'\cdot cosx+\left(sin^2x\right)\cdot\left(cosx\right)'\right]\)
=>\(y''=3\left[2\cdot sinx\cdot\left(sinx\right)'\cdot cosx+sin^2x\cdot\left(-sinx\right)\right]\)
=>\(y''=3\left[2\cdot sinx\cdot cosx\cdot sinx-sin^3x\right]\)
=>\(y''=6\cdot sin^2x\cdot cosx-3\cdot sin^3x\)
3: \(y=2\cdot sin2x-cos\left(x+\dfrac{\Omega}{3}\right)\)
=>\(y'=2\cdot\left(2x\right)'\cdot\left(cos2x\right)-\left(-1\right)\cdot\left(x+\dfrac{\Omega}{3}\right)'\cdot sin\left(x+\dfrac{\Omega}{3}\right)\)
=>\(y'=4\cdot cos2x+sin\left(x+\dfrac{\Omega}{3}\right)\)
=>\(y''=4\cdot\left(-1\right)\cdot\left(2x\right)'\cdot sin2x+\left(x+\dfrac{\Omega}{3}\right)'\cdot cos\left(x+\dfrac{\Omega}{3}\right)\)
=>\(y''=-8\cdot sin2x+cos\left(x+\dfrac{\Omega}{3}\right)\)
4: \(y=\sqrt{x^2+1}\)
=>\(y'=\dfrac{\left(x^2+1\right)'}{2\sqrt{x^2+1}}=\dfrac{2x}{2\sqrt{x^2+1}}=\dfrac{x}{\sqrt{x^2+1}}\)
=>\(y''=\dfrac{x'\cdot\sqrt{x^2+1}-x\cdot\left(\sqrt{x^2+1}\right)'}{x^2+1}\)
=>\(y''=\dfrac{\sqrt{x^2+1}-x\cdot\dfrac{x}{\sqrt{x^2+1}}}{x^2+1}\)
=>\(y''=\dfrac{x^2+1-x^2}{\sqrt{x^2+1}\cdot\left(x^2+1\right)}=\dfrac{1}{\left(x^2+1\right)\cdot\sqrt{x^2+1}}\)
5: \(y=x\cdot cosx\)
=>\(y'=x'\cdot cosx+x\cdot\left(cosx\right)'=cosx-sinx\cdot x\)
=>\(y''=\left(cosx\right)'-\left(sinx\cdot x\right)'\)
=>\(y''=-sinx-\left[\left(sinx\right)'\cdot x+sinx\cdot x'\right]\)
=>\(y''=-sinx-cosx\cdot x-sinx\)
=>\(y''=-2\cdot sinx-cosx\cdot x\)
6: \(y=\dfrac{x+2}{x-3}\)
=>\(y'=\dfrac{\left(x+2\right)'\left(x-3\right)-\left(x+2\right)\left(x-3\right)'}{\left(x-3\right)^2}\)
=>\(y''=\dfrac{x-3-x-2}{\left(x-3\right)^2}=\dfrac{-5}{\left(x-3\right)^2}\)
=>\(y''=\dfrac{\left(-5\right)'\cdot\left(x-3\right)^2-\left(-5\right)\cdot\left[\left(x-3\right)^2\right]'}{\left(x-3\right)^4}\)
=>\(y''=\dfrac{5\cdot\left(x^2-6x+9\right)'}{\left(x-3\right)^4}\)
=>\(y''=\dfrac{5\left(2x-6\right)}{\left(x-3\right)^4}=\dfrac{10}{\left(x-3\right)^3}\)