K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

=>DA=DE

Xét ΔDAK vuông tại A và ΔDEC vuông tại E có

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)

Do đó: ΔDAK=ΔDEC

b: ΔDAK=ΔDEC

=>AK=EC

ΔBAD=ΔBED
=>BA=BE

BA+AK=BK

BE+EC=BC

mà BA=BE và AK=EC

nên BK=BC

d:

Xét ΔBKC có BK=BC

nên ΔBKC cân tại B

ΔBKC cân tại B

mà BH là đường phân giác

nên H là trung điểm của CK

=>HK=HC

1 tháng 9 2023

Bài 1:

a, \(\dfrac{2}{3}\) + \(\dfrac{1}{5}\)\(\dfrac{10}{7}\)

\(\dfrac{2}{3}\) + \(\dfrac{2}{7}\) 

\(\dfrac{20}{21}\)

b, \(\dfrac{7}{12}\) - \(\dfrac{27}{7}\)\(\dfrac{1}{18}\)

\(\dfrac{7}{12}\) - \(\dfrac{3}{14}\)

\(\dfrac{31}{84}\)

c, \(\dfrac{3}{10}\)\(\dfrac{-5}{6}\) - \(\dfrac{1}{8}\)

= - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\)

= - \(\dfrac{3}{8}\)

1 tháng 9 2023

d, - \(\dfrac{4}{9}\)\(\dfrac{8}{3}\) + \(\dfrac{1}{18}\)

= - \(\dfrac{1}{6}\) + \(\dfrac{1}{18}\)

= - \(\dfrac{1}{9}\)

e,  {[(\(\dfrac{1}{2}\) - \(\dfrac{2}{3}\))2 : 2 ] - 1}. \(\dfrac{4}{5}\)

= {[ (-\(\dfrac{1}{6}\))2 : 2] - 1}. \(\dfrac{4}{5}\)

= { [\(\dfrac{1}{36}\) : 2] - 1}. \(\dfrac{4}{5}\)

= { \(\dfrac{1}{72}\) - 1}. \(\dfrac{4}{5}\)

=- \(\dfrac{71}{72}\).\(\dfrac{4}{5}\)

= -\(\dfrac{71}{90}\)

AH
Akai Haruma
Giáo viên
15 tháng 10 2023

Bạn xem bài tương tự tại đây. Đề là:
Tính $(1+\frac{1}{1.3})(1+\frac{1}{2.4})....(1+\frac{1}{2021.2023})$

2 tháng 8 2021

Câu b

5x-8=2x+7

<=> 3x=7+8=15

<=>x=5

Câu c:

<=>4x=3+5

<=>4x=8

<=>x=2

Câu d

<=>6=4x

<=> x=3/2

Câu e

<=> 2x+8-6x+15=3

<=>4x=20

<=>x=5

2 tháng 8 2021

b)5x-8=2x+7

⇔3x=15

⇔ x=5

c)4x2+2x-5=4x2-2x+3

⇔ 4x=8

⇔ x=2

d)2x3-3x+6=2x3+x

⇔ 4x=6

⇔ \(x=\dfrac{3}{2}\)

e)2(x+4)-3(2x-5)=3

⇔ 2x+4-6x+15=3

⇔ -4x+19=3

⇔ 4x=16

⇔ x=4

30 tháng 9

    Các em đăng câu hỏi lên diễn đàn thì cần đăng đầy đủ nội dung câu hỏi lên trên này. Có như vậy mọi người mới biết yêu cầu của đề bài và trợ giúp các em tốt nhất. Cảm ơn các em đã đồng hành cùng Olm. 

14 tháng 10 2021

\(a,\widehat{xAB}+\widehat{ABy}=122^0+58^0=180^0\) mà 2 góc này ở vị trí TCP nên Ax//By

\(b,\) Kẻ By' đối By

Ta có Ax//By, Ax//Cz nên By//Cz

Do đó \(\widehat{B_2}+\widehat{BCz}=180^0\left(TCP\right)\Rightarrow\widehat{B_2}=148^0\)

Ta có \(\widehat{B_1}+\widehat{B_2}+\widehat{B_3}=360^0\Rightarrow\widehat{B_3}-360^0-122^0-148^0=90^0\)

Do đó AB vuông góc BC

14 tháng 10 2021

a) Ta có: \(\widehat{xAB}+\widehat{ABy}=58^0+122^0=180^0\)

Mà 2 góc này trong cùng phía

=> Ax//By

b) Ta có: Ax//By, Ax//Cz

=> By//Cz

 \(\Rightarrow\widehat{B_2}=180^0-\widehat{C}=180^0-32^0=148^0\)(trong cùng phía)

\(\Rightarrow\widehat{ABC}=360^0-\widehat{B_1}-\widehat{B_2}=360^0-122^0-148^0=90^0\)

=> AB⊥BC

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Lời giải:
Xét tam giác vuông $DEM$ và $DFN$ có:

$DE=DF$ (do $DEF$ là tgc tại $D$)

$\widehat{D}$ chung

$\Rightarrow \triangle DEM=\triangle DFN$ (ch-gn)

$\Rightarrow DM=DN$ 

Xét tam giác vuông $DNO$ và $DMO$ có:

$DO$ chung

$DM=DN$ 

$\Rightarrow \triangle DNO=\triangle DMO$ (ch-cgv)

$\Rightarrow \widehat{NDO}=\widehat{MDO}$ hay $\widehat{EDI}=\widehat{FDI}$

Xét tam giác $DEI$ và $DFI$ có:

$DI$ chung

$DE=DF$

$\widehat{EDI}=\widehat{FDI}$ 

$\Rightarrow \triangle DEI=\triangle DFI$ (c.g.c)

$\Rightarrow EI=FI$ (đpcm)

AH
Akai Haruma
Giáo viên
30 tháng 5 2021

Hình vẽ: