Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
a.
\(n^2+7n+1=k^2\Rightarrow4n^2+28n+4=4k^2\)
\(\Leftrightarrow\left(2n+7\right)^2-45=\left(2k\right)^2\)
\(\Leftrightarrow\left(2n-2k+7\right)\left(2n+2k+7\right)=45\)
Phương trình ước số cơ bản
b.
\(a^3b^3+b^3-3ab^2=-1\)
\(\Leftrightarrow a^3+1-\dfrac{3a}{b}=-\dfrac{1}{b^3}\)
\(\Leftrightarrow a^3+\dfrac{1}{b^3}+1-\dfrac{3a}{b}=0\)
Đặt \(\left(a;\dfrac{1}{b}\right)=\left(x;y\right)\Rightarrow x^3+y^3+1-3xy=0\)
\(\Leftrightarrow\left(x+y\right)^3+1-3xy\left(x+y\right)-3xy=0\)
\(\Leftrightarrow\left(x+y+1\right)\left(x^2+y^2+1-xy-x-y\right)=0\)
\(\Leftrightarrow x+y+1=0\)
\(\Rightarrow P=a+\dfrac{1}{b}=x+y=-1\)
2.
a.
\(a+b+\dfrac{1}{a}+\dfrac{1}{b}=\left(\dfrac{a}{4}+\dfrac{1}{a}\right)+\left(\dfrac{b}{4}+\dfrac{1}{b}\right)+\dfrac{3}{4}\left(a+b\right)\)
\(\ge2\sqrt{\dfrac{a}{4a}}+2\sqrt{\dfrac{b}{4b}}+\dfrac{3}{4}.4=5\) (đpcm)
Dấu "=" xảy ra khi \(a=b=2\)
\(A=-2\left(x^2-\dfrac{1}{2}x\right)=-2\left(x^2-2.x.\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{16}\right)\)
\(=-2\left(x^2-2x.\dfrac{1}{4}+\dfrac{1}{16}\right)+\dfrac{1}{8}=-2\left(x-\dfrac{1}{4}\right)^2+\dfrac{1}{8}\le\dfrac{1}{8}\)
\(\Rightarrow A_{max}=\dfrac{1}{8}\)
b: \(P=\dfrac{4x+6+6x+9-6x-5}{\left(2x+3\right)\left(2x-3\right)}\)
\(=\dfrac{4x+10}{4x^2-9}\)
Câu 4:
Vì D,E là trung điểm AB,AC nên DE là đtb \(\Delta ABC\)
Do đó \(BC=2DE=64\left(m\right)\)
Câu 5:
Chiều dài là \(6:\left(4-3\right).4=24\left(m\right)\)
Diện tích là \(24.\left(24-6\right)=432\left(m^2\right)\)
Xét ΔKLH có KN là phân giác
nên LN/LK=HN/HK
=>LN/3=HN/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{LN}{3}=\dfrac{HN}{4}=\dfrac{LN+HN}{3+4}=\dfrac{25}{7}\)
Do đó: LN=75/7(cm); HN=100/7(cm)
1 \(=\dfrac{4x^2+7+5x^2-7}{3x^2y}=\dfrac{9x^2}{3x^2y}=\dfrac{3}{y}\)
2: \(=\dfrac{6x+3x+27}{x+3}=\dfrac{9x+27}{x+3}=9\)
3: \(=\dfrac{x^2-10x+25}{x-5}=\dfrac{\left(x-5\right)^2}{x-5}=x-5\)
4: \(=\dfrac{x+y}{xy\left(x+y\right)}=\dfrac{1}{xy}\)
5: \(=\dfrac{2x-6+3x+9+1}{\left(x-3\right)\left(x+3\right)}=\dfrac{5x+4}{\left(x-3\right)\left(x+3\right)}\)