Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\left(4x+3\right)\left(3x^2+x-2\right)\left(2x^2-3x-5\right)=0\\ \Leftrightarrow\left(4x+3\right)\left(3x-2\right)\left(x+1\right)\left(2x-5\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{4}\\x=-1\\x=\dfrac{2}{3}\\x=\dfrac{5}{2}\end{matrix}\right.\\ \Leftrightarrow A=\left\{-1;-\dfrac{3}{4};\dfrac{2}{3};\dfrac{5}{2}\right\}\)
Câu 2:
\(\left(x^2-4\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=3\end{matrix}\right.\Leftrightarrow A=\left\{-2;2;3\right\}\\ \left|5x\right|-11\le0\Leftrightarrow\left|5x\right|\le11\Leftrightarrow-11\le5x\le11\\ \Leftrightarrow-\dfrac{11}{5}\le x\le\dfrac{11}{5}\\ \Leftrightarrow B=\left[-\dfrac{11}{5};\dfrac{11}{5}\right]\)
\(\Leftrightarrow A\cap B=\left\{-2;2\right\}\\ A\cup B=\left[-\dfrac{11}{5};3\right]\\ A\B=\left\{3\right\}\)
Nếu này làm xong thêm 1 bước nửa giao hợp tập nghiệm á em
Í giờ em mới để ý lớp 10 :(( Tại lớp 9 em mới học có nhiu đó à
ĐKXĐ:
a. \(\left\{{}\begin{matrix}x+1\ge0\\x^2-3x+2\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ne\left\{1;2\right\}\end{matrix}\right.\)
Hay \(D=[-1;1)\cup\left(1;2\right)\cup\left(2;+\infty\right)\)
b. \(\left\{{}\begin{matrix}x+2\ge0\\1-x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge-2\\x\ne1\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}1+x\ge0\\1-x\ge0\end{matrix}\right.\) \(\Leftrightarrow-1\le x\le1\)
d. \(\left\{{}\begin{matrix}1-4x^2\ge0\\x^2-2x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-\dfrac{1}{2}\le x\le\dfrac{1}{2}\\x\ne0\end{matrix}\right.\)
Câu 1:
\(\left\{{}\begin{matrix}y-2x< =2\\2y-x>=4\\x+y< =5\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y< =2x+2\\2y>=x+4\\y< =-x+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y< =2x+2\\y< =-x+5\\y>=\dfrac{1}{2}x+2\end{matrix}\right.\)
y<=2x+2
=>y-2x-2<=0
Vẽ đường thẳng y=2x+2
Khi x=0 và y=0 thì \(y-2x-2=0-0-2=-2< =0\)(đúng)
=>Miền nghiệm của BPT y<=2x+2 là nửa mặt phẳng vừa chứa biên vừa chứa điểm O(0;0)
y<=-x+5
=>x+y-5<=0
Khi x=0 và y=0 thì \(x+y-5=0+0-5< =0\)(đúng)
=>Miền nghiệm của BPT y<=-x+5 là nửa mặt phẳng vừa chứa biên vừa chứa điểm O(0;0)
y>=1/2x+2
=>\(-\dfrac{1}{2}x+y-2>=0\)
Khi x=0 và y=0 thì \(-\dfrac{1}{2}x+y-2=-\dfrac{1}{2}\cdot0+0-2=-2< 0\)
=>O(0;0) không thỏa mãn BPT \(-\dfrac{1}{2}x+y-2>=0\)
=>Miền nghiệm của BPT \(y>=\dfrac{1}{2}x+2\) là nửa mặt phẳng chứa biên nhưng không chứa điểm O(0;0)
Vẽ đồ thị:
Theo hình vẽ, ta có: Miền nghiệm của hệ BPT sẽ là ΔABC, với A(0;2); B(1;4); C(2;3)
Khi x=0 và y=2 thì F=2-0=2
Khi x=1 và y=4 thì F=4-1=3
Khi x=2 và y=3 thì F=3-2=1
=>Chọn A
Tham khảo tại link sau:
https://hoc24.vn/cau-hoi/ai-giup-em-cau-2-voi-a.3401576227354
1.
Phương trình có 2 nghiệm dương pb khi:
\(\left\{{}\begin{matrix}\Delta'=\left(m+1\right)^2-\left(2m+46\right)=m^2-45>0\\x_1+x_2=2\left(m+1\right)>0\\x_1x_2=2m+46>0\end{matrix}\right.\) \(\Rightarrow m>3\sqrt{5}\)
Khi đó:
\(\left|\sqrt{x_1}-\sqrt{x_2}\right|=2\)
\(\Leftrightarrow x_1+x_2-2\sqrt{x_1x_2}=4\)
\(\Leftrightarrow2\left(m+1\right)-2\sqrt{2m+46}=4\)
\(\Leftrightarrow2m+46-2\sqrt{2m+46}-48=0\)
Đặt \(\sqrt{2m+46}=a>0\)
\(\Rightarrow a^2-2a-48=0\Leftrightarrow\left[{}\begin{matrix}a=8\\a=-6\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow\sqrt{2m+46}=8\)
\(\Rightarrow m=9\)
2.
Kết hợp pt thứ 2 và điều kiện đề bài ta được:
\(\left\{{}\begin{matrix}mx+3y=m+3\\x-3y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m+1\right)x=m+5\\x-3y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}m\ne-1\\x=\dfrac{m+5}{m+1}\\y=\dfrac{-m+3}{3\left(m+1\right)}\end{matrix}\right.\)
Thay vào pt đầu:
\(\Rightarrow\dfrac{2\left(m+5\right)}{m+1}+\dfrac{\left(m-1\right)\left(-m+3\right)}{3\left(m+1\right)}=4\)
\(\Rightarrow m^2-2m-15=0\Rightarrow\left[{}\begin{matrix}m=-5\\m=3\end{matrix}\right.\)
\(A=\frac{1+sin4x-cos4x}{1+sin4x+cos4x}=\frac{sin4x+\left(1-cos4x\right)}{sin4x+\left(1+cos4x\right)}=\frac{sin4x+2sin^22x}{sin4x+2cos^22x}=\frac{2sin2x\left(cos2x+sin2x\right)}{2cos2x\left(sin2x+cos2x\right)}\)
\(=\frac{2sin2x}{2cos2x}=tan2x\)