K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2021

\(a,=5\sqrt{2}-3\sqrt{2}+6\sqrt{2}=8\sqrt{2}\\ b,=\dfrac{5\sqrt{3}}{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}=\dfrac{5\sqrt{3}}{3}-\sqrt{3}+1=\dfrac{5\sqrt{3}-3\sqrt{3}+3}{3}=\dfrac{2\sqrt{3}+3}{3}\)

27 tháng 12 2017

a)

\(7\sqrt{12}+\frac{1}{3}\sqrt{27}-\sqrt{75}\)

\(=14\sqrt{3}+\sqrt{3}-5\sqrt{3}\)

\(=10\sqrt{3}\)

b)

\(\left(2\sqrt{20}+\sqrt{125}-3\sqrt{80}\right):5\)

\(=\left(4\sqrt{5}+5\sqrt{5}-12\sqrt{5}\right):5\)

\(=-3\sqrt{5}:5\)

\(=\frac{-3\sqrt{5}}{5}\)

c)

\(3\sqrt{12a}-5\sqrt{3a}+\sqrt{48a}\)

\(=6\sqrt{3a}-5\sqrt{3a}+4\sqrt{3a}\)

\(=5\sqrt{3a}\)

d: Ta có: \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)

\(=\dfrac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11}+1-\sqrt{11}+1}{\sqrt{2}}\)

\(=\sqrt{2}\)

 

d: Ta có: \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)

\(=\dfrac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{11}+1-\sqrt{11}+1}{\sqrt{2}}\)

\(=\sqrt{2}\)

30 tháng 5 2022

1) \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)

\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)

\(=-6\sqrt{2}\)

2) \(\sqrt{50}-\sqrt{18}+\sqrt{200}-\sqrt{162}\)

\(=5\sqrt{2}-3\sqrt{2}+10\sqrt{2}-9\sqrt{2}\)

\(=3\sqrt{2}\)

3) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)

\(=5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)

\(=-2\sqrt{5}\)

4) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)

\(=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)

\(=4\sqrt{3}\)

5) \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)

\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{10}{3}\sqrt{3}\)

\(=-\dfrac{17}{3}\sqrt{3}\)

20 tháng 6 2019

a) \(ĐKXĐ:x\ge1\)

\(\sqrt{x-1}=3\)

\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=3^2\)

\(\Leftrightarrow x-1=9\)

\(\Leftrightarrow x=10\)

Vậy nghiệm duy nhất của pt là 10.

b)\(ĐKXĐ:x\ge3\)

 \(\sqrt{x^2-6x+9}=1\)

\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\)

\(\Leftrightarrow x-3=1\)

\(\Leftrightarrow x=4\)

Vậy nghiệm duy nhất của pt là 4

20 tháng 6 2019

\(a,\sqrt{x-1}=3\)\(\text{ĐKXĐ: }x\ge1\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=3^2\)

\(\Leftrightarrow|x-1|=9\)

\(\Leftrightarrow x-1=\pm9\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=9\\x-1=-9\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=10\text{(thỏa mãn ĐKXĐ)}\\x=-8\text{(không thỏa mãn ĐKXĐ)}\end{cases}}\)