Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(7\sqrt{12}+\frac{1}{3}\sqrt{27}-\sqrt{75}\)
\(=14\sqrt{3}+\sqrt{3}-5\sqrt{3}\)
\(=10\sqrt{3}\)
b)
\(\left(2\sqrt{20}+\sqrt{125}-3\sqrt{80}\right):5\)
\(=\left(4\sqrt{5}+5\sqrt{5}-12\sqrt{5}\right):5\)
\(=-3\sqrt{5}:5\)
\(=\frac{-3\sqrt{5}}{5}\)
c)
\(3\sqrt{12a}-5\sqrt{3a}+\sqrt{48a}\)
\(=6\sqrt{3a}-5\sqrt{3a}+4\sqrt{3a}\)
\(=5\sqrt{3a}\)
d: Ta có: \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)
\(=\dfrac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{11}+1-\sqrt{11}+1}{\sqrt{2}}\)
\(=\sqrt{2}\)
d: Ta có: \(\sqrt{6+\sqrt{11}}-\sqrt{6-\sqrt{11}}\)
\(=\dfrac{\sqrt{12+2\sqrt{11}}-\sqrt{12-2\sqrt{11}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{11}+1-\sqrt{11}+1}{\sqrt{2}}\)
\(=\sqrt{2}\)
1) \(3\sqrt{2}-4\sqrt{18}+2\sqrt{32}-\sqrt{50}\)
\(=3\sqrt{2}-12\sqrt{2}+8\sqrt{2}-5\sqrt{2}\)
\(=-6\sqrt{2}\)
2) \(\sqrt{50}-\sqrt{18}+\sqrt{200}-\sqrt{162}\)
\(=5\sqrt{2}-3\sqrt{2}+10\sqrt{2}-9\sqrt{2}\)
\(=3\sqrt{2}\)
3) \(5\sqrt{5}+\sqrt{20}-3\sqrt{45}\)
\(=5\sqrt{5}+2\sqrt{5}-9\sqrt{5}\)
\(=-2\sqrt{5}\)
4) \(5\sqrt{48}-4\sqrt{27}-2\sqrt{75}+\sqrt{108}\)
\(=20\sqrt{3}-12\sqrt{3}-10\sqrt{3}+6\sqrt{3}\)
\(=4\sqrt{3}\)
5) \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{10}{3}\sqrt{3}\)
\(=-\dfrac{17}{3}\sqrt{3}\)
a) \(ĐKXĐ:x\ge1\)
\(\sqrt{x-1}=3\)
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=3^2\)
\(\Leftrightarrow x-1=9\)
\(\Leftrightarrow x=10\)
Vậy nghiệm duy nhất của pt là 10.
b)\(ĐKXĐ:x\ge3\)
\(\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow x-3=1\)
\(\Leftrightarrow x=4\)
Vậy nghiệm duy nhất của pt là 4
\(a,\sqrt{x-1}=3\)\(\text{ĐKXĐ: }x\ge1\)
\(\Leftrightarrow\sqrt{\left(x-1\right)^2}=3^2\)
\(\Leftrightarrow|x-1|=9\)
\(\Leftrightarrow x-1=\pm9\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=9\\x-1=-9\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=10\text{(thỏa mãn ĐKXĐ)}\\x=-8\text{(không thỏa mãn ĐKXĐ)}\end{cases}}\)
\(a,=5\sqrt{2}-3\sqrt{2}+6\sqrt{2}=8\sqrt{2}\\ b,=\dfrac{5\sqrt{3}}{3}-\dfrac{2\left(\sqrt{3}-1\right)}{2}=\dfrac{5\sqrt{3}}{3}-\sqrt{3}+1=\dfrac{5\sqrt{3}-3\sqrt{3}+3}{3}=\dfrac{2\sqrt{3}+3}{3}\)