K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2018

\(AC=2AB\left(gt\right)\Rightarrow AB=\frac{1}{2}AC\)

I là trung điểm của AC (gt) \(\Rightarrow IC=\frac{1}{2}AC\Rightarrow AB=IC\)

\(\hept{\begin{cases}\widehat{B}+\widehat{C}=90^0\\\widehat{C}+\widehat{KIC}=90^0\end{cases}\Rightarrow\widehat{B}=\widehat{KIC}}\)

\(\Delta AHB=\Delta CKI\left(ch-gn\right)\Rightarrow AH=CK\)(1)

b, Tam giác AHC có: I là trung điểm của AC và IK // AH (vì cùng vuông góc với HC)

Nên K là trung điểm của HC \(\Rightarrow HC=2CK\) (2) 

D đối xứng với H qua A (gt) nên A là trung điểm của HD\(\Rightarrow HD=2AH\) (3)

Từ (1),(2) và (3) ta được HC = HD

Hình chữ nhật CHDE (gt) có HC = HD (cmt) thì CHDE là hình vuông.

Chúc bạn học tốt.

30 tháng 11 2021

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

mà \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

24 tháng 10 2021

a: Xét tứ giác AEHF có

\(\widehat{AEH}=\widehat{AFH}=\widehat{FAE}=90^0\)

Do đó: AEHF là hình chữ nhật

a: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

=>ABDC là hình bình hành

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=6^2+8^2=100\)

=>\(BC=\sqrt{100}=10\left(cm\right)\)

Hình bình hành ABDC có \(\widehat{BAC}=90^0\)

nên ABDC là hình chữ nhật

=>AD=BC

mà BC=10cm

nên AD=10cm

b: Xét ΔMHA vuông tại H và ΔMKD vuông tại K có

MA=MD

\(\widehat{HMA}=\widehat{KMD}\)(hai góc đối đỉnh)

Do đó: ΔMHA=ΔMKD

=>MH=MK

=>M là trung điểm của HK

Xét tứ giác AHDK có

M là trung điểm chung của AD và HK

=>AHDK là hình bình hành

=>AK//DH

c: E đối xứng A qua BC

=>BC là đường trung trực của AE

=>BC\(\perp\)AE tại trung điểm của AE(1)

Ta có: BC\(\perp\)AE

BC\(\perp\)AH

AE,AH có điểm chung là A

Do đó: E,A,H thẳng hàng(2)

Từ (1) và (2) suy ra H là trung điểm của AE

Xét ΔADE có

H,M lần lượt là trung điểm của AE,AD

=>HM là đường trung bình của ΔADE

=>HM//DE

mà \(H\in BC;M\in\)BC

nên DE//BC

Xét ΔCAE có

CH là đường cao

CH là đường trung tuyến

Do đó: ΔCAE cân tại C

=>CA=CE

mà CA=BD(ABDC là hình chữ nhật)

nên CE=BD

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

Hình thang BEDC có BD=CE

nên BEDC là hình thang cân