Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi DH là khoảng cách thấp nhất từ máy bay đến mặt đất, khi đó AC có độ dài lớn nhất là 2,2m. Dựng hình chữ nhật DHEK => DH = EK
Do BA = BE = BC = 1,5m cố định nên tam giác ACE vuông tại A
Xét tam giác ACE vuông tại A có cos\(\widehat{ECA}\) = \(\dfrac{CA}{CE}=\dfrac{2,2}{3}\) => \(\widehat{ECA}\) \(\approx\) 42o50'
BA = BC => tam giác ABC cân tại B => \(\widehat{BAC}=\widehat{BCA}\) = \(\widehat{ECA}\) \(\approx\) 42o50'
=> \(\widehat{DBK}\) = \(\widehat{BAC}+\widehat{BCA}\) = 2.\(\widehat{BCA}\) = 85o40'
Xét tam giác DBK vuông tại D có: BK = BD. cos\(\widehat{DBK}\)
= 4.cos85o40' \(\approx\) 0,3022
=> DH = KE \(\approx\) 1,5 - 0,3022 \(\approx\)1,2 (m)
\(g,ĐK:x\ge0\\ PT\Leftrightarrow10\sqrt{x}+8\sqrt{x}-11\sqrt{x}=21\\ \Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(tm\right)\\ h,ĐK:x\ge0\\ PT\Leftrightarrow6\sqrt{3x}+2\sqrt{3x}-3\sqrt{3x}=15\\ \Leftrightarrow\sqrt{3x}=5\Leftrightarrow3x=25\Leftrightarrow x=\dfrac{25}{3}\left(tm\right)\\ i,ĐK:x\ge0\\ PT\Leftrightarrow12\sqrt{x}-21-2\sqrt{x}+10=6\sqrt{x}-12\\ \Leftrightarrow4\sqrt{x}=-1\Leftrightarrow\sqrt{x}=-\dfrac{1}{4}\Leftrightarrow x\in\varnothing\\ j,ĐK:x\ge2\\ PT\Leftrightarrow6\sqrt{x-2}-15\cdot\dfrac{1}{5}\sqrt{x-2}=20+4\sqrt{x-2}\\ \Leftrightarrow\sqrt{x-2}=-20\Leftrightarrow x\in\varnothing\)
\(k,ĐK:x\ge3\\ PT\Leftrightarrow6\sqrt{x-3}-\dfrac{1}{5}\cdot5\sqrt{x-3}-\dfrac{1}{7}\cdot7\sqrt{x-3}=20\\ \Leftrightarrow4\sqrt{x-3}=20\Leftrightarrow\sqrt{x-3}=5\\ \Leftrightarrow x-3=25\Leftrightarrow x=28\left(tm\right)\\ l,ĐK:x\ge5\\ PT\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\Leftrightarrow\sqrt{x-5}=2\\ \Leftrightarrow x-5=4\Leftrightarrow x=9\left(tm\right)\)
a: Ta có: BC⊥BA tại B
nên BC là tiếp tuyến của (A;AB)
b: Xét (A) có
CB là tiếp tuyến
CD là tiếp tuyến
Do đó: CB=CD
hay C nằm trên đường trung trực của BD(1)
Ta có: AB=AD
nên A nằm trên đường trung trực của BD(2)
Từ (1) và (2) suy ra AC là đường trung trực của BD
hay AC\(\perp\)BD
Giúp mình luôn câu c d được không:((( sắp hết h rồi mà không bt làm
a: Xét ΔSBM và ΔSNB có
\(\widehat{SBM}=\widehat{SNB}\)
\(\widehat{BSM}\) chung
Do đó: ΔSBM\(\sim\)ΔSNB
Suy ra: SB/SN=SM/SB
hay \(SB^2=SM\cdot SN\)
b: Xét (O) có
SA là tiếp tuyến
SB là tiếp tuyến
Do đó: SA=SB
mà OA=OB
nên SO là đường trung trực của AB
=>SO⊥AB
Xét ΔOBS vuông tại B có BH là đường cao
nên \(SH\cdot SO=SB^2=SM\cdot SN\)
x + 3y = x(5y - 1) (1)
1/x - 3/y = -2 (2)
(1) ⇔ x(5y - 1) - x = 3y
⇔ x(5y - 2) = 3y
⇔ x = 3y/(5y - 2) (3)
Thế (3) vào (2) ta được:
(2) ⇔ 1/[3y/(5y - 2)] - 3/y = -2
⇔ (5y - 2)/3y - 3/y = -2
⇔ 5y - 2 - 9 = -6y
⇔ 5y + 6y = 11
⇔ 11y = 11
⇔ y = 1 thế vào (3) ta được:
x = 3.1/(5.1 - 2) = 1
Vậy S = {(1; 1)}
a.
d đi qua A nên:
\(1\left(m+1\right)-2m+3=2\)
\(\Rightarrow m=2\)
b.
Em tự vẽ
c.
Giả sử điểm cố định mà d luôn đi qua là \(M\left(x_0;y_0\right)\), khi đó với mọi m ta luôn có:
\(y_0=\left(m+1\right)x_0-2m+3\)
\(\Leftrightarrow m\left(x_0-2\right)+x_0-y_0+3=0\)
\(\Rightarrow\left\{{}\begin{matrix}x_0-2=0\\x_0-y_0+3=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x_0=2\\y_0=5\end{matrix}\right.\) \(\Rightarrow M\left(2;5\right)\)
d.
- Với \(m=-1\Rightarrow\) d không cắt y=2
- Với \(m\ne-1\)
\(\Rightarrow\left(m+1\right)x-2m+3=2\)
\(\Rightarrow\left(m+1\right)x=2m-1\)
\(\Rightarrow x=\dfrac{2m-1}{m+1}\)
Tọa độ giao điểm của d và y=2 là: \(\left(\dfrac{2m-1}{m+1};2\right)\)
a) \(D=4\sqrt{\dfrac{1}{3}}+5\sqrt{12}-6\sqrt{27}\)
\(=\dfrac{4}{9}\sqrt{3}+5.2\sqrt{3}-6.3\sqrt{3}\)
\(=\dfrac{4}{9}\sqrt{3}+10\sqrt{3}-18\sqrt{3}\)
\(=-\dfrac{68}{9}\sqrt{3}\)
b) \(E=\dfrac{2}{\sqrt{3}-1}-\sqrt{4-2\sqrt{3}}\)
\(=\dfrac{2\left(\sqrt{3}+1\right)}{2}-\sqrt{\left(\sqrt{3}\right)^2-2.\sqrt{3}.1+1^2}\)
\(=\sqrt{3}+1-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\left(\sqrt{3}-1\right)\)
\(=\sqrt{3}+1-\sqrt{3}+1=2\)
c) \(F=\dfrac{\sqrt{15}-\sqrt{10}}{\sqrt{3}-\sqrt{2}}+\dfrac{3}{2-\sqrt{5}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{3}-\sqrt{2}\right)}{\sqrt{3}-\sqrt{2}}+\dfrac{3\left(2+\sqrt{5}\right)}{-1}\)
\(=\sqrt{5}-6-3\sqrt{5}=-2\sqrt{5}-6\)